scholarly journals Overexpression of Interferon Regulatory Factor 7 (IRF7) Reduces Bone Metastasis of Prostate Cancer Cells in Mice

Author(s):  
Yang Zhao ◽  
Wenxia Chen ◽  
Weiliang Zhu ◽  
Hui Meng ◽  
Jie Chen ◽  
...  

The purpose of this study was to identify the role of interferon regulatory factor 7 (IRF7) in the bone metastasis of prostate cancer. Herein we demonstrated the lower expression of IRF7 in bone metastases of prostate cancer. Overexpression of IRF7 in prostate cancer cells had a marked effect on inhibiting bone metastases but not on tumor growth in xenograft nude mice. While in vitro, upregulation of IRF7 had little effect on the malignant phenotype of prostate cancer cells including proliferation, apoptosis, migration, and invasion. However, prostate cancer cells overexpressing IRF7 significantly enhanced the activity of NK cells, which resulted in the cytolysis of prostate cancer target cells. The underlying mechanism may be relevant to the increasing expression of IFN-β induced by IRF7, as the downregulation of which could inversely inhibit the activity of NK cells. In conclusion, our findings indicate that IRF7 plays a role in reducing bone metastasis of prostate cancer by IFN-β-mediated NK activity.

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


2010 ◽  
Vol 9 (1) ◽  
pp. 258 ◽  
Author(s):  
Sanjeev K Baniwal ◽  
Omar Khalid ◽  
Yankel Gabet ◽  
Ruchir R Shah ◽  
Daniel J Purcell ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1648
Author(s):  
Anie P. Masilamani ◽  
Viviane Dettmer-Monaco ◽  
Gianni Monaco ◽  
Toni Cathomen ◽  
Irina Kuckuck ◽  
...  

Background: Upregulation of anti-apoptotic Bcl-2 proteins in advanced prostate cancer leads to therapeutic resistance by prevention of cell death. New therapeutic approaches aim to target the Bcl-2 proteins for the restoration of apoptosis. Methods: The immunotoxin hD7-1(VL-VH)-PE40 specifically binds to the prostate specific membrane antigen (PSMA) on prostate cancer cells and inhibits protein biosynthesis. It was tested with respect to its effects on the expression of anti-apoptotic Bcl-2 proteins. Combination with the BAD-like mimetic ABT-737 was examined on prostate cancer cells and 3D spheroids and in view of tumor growth and survival in the prostate cancer SCID mouse xenograft model. Results: The immunotoxin led to a specific inhibition of Mcl-1 and Bcl2A1 expression in PSMA expressing target cells. Its combination with ABT-737, which inhibits Bcl-2, Bcl-xl, and Bcl-w, led to an induction of the intrinsic apoptotic pathway and to a synergistic cytotoxicity in prostate cancer cells and 3D spheroids. Furthermore, combination therapy led to a significantly prolonged survival of mice bearing prostate cancer xenografts based on an inhibition of tumor growth. Conclusion: The combination therapy of anti-PSMA immunotoxin plus ABT-737 represents the first tumor-specific therapeutic approach on the level of Bcl-2 proteins for the induction of apoptosis in prostate cancer.


2019 ◽  
Vol 20 (16) ◽  
pp. 3899 ◽  
Author(s):  
Mari I. Suominen ◽  
Timothy Wilson ◽  
Sanna-Maria Käkönen ◽  
Arne Scholz

Bone metastasis is a common clinical complication in several cancer types, and it causes a severe reduction in quality of life as well as lowering survival time. Bone metastases proceed through a vicious self-reinforcing cycle that can be osteolytic or osteoblastic in nature. The vicious cycle is characterized by cancer cells residing in bone releasing signal molecules that promote the differentiation of osteoclasts and osteoblasts either directly or indirectly. The increased activity of osteoclasts and osteoblasts then increases bone turnover, which releases growth factors that benefit metastatic cancer cells. In order to improve the prognosis of patients with bone metastases this cycle must be broken. Radium-223 dichloride (radium-223), the first targeted alpha therapy (TAT) approved, is an osteomimetic radionuclide that is incorporated into bone metastases where its high-linear energy transfer alpha radiation disrupts both the activity of bone cells and cancer cells. Therefore, radium-223 treatment has been shown preclinically to directly affect cancer cells in both osteolytic breast cancer and osteoblastic prostate cancer bone metastases as well as to inhibit the differentiation of osteoblasts and osteoclasts. Clinical studies have demonstrated an increase in survival in patients with metastatic castration-resistant prostate cancer. Due to the effectiveness and low toxicity of radium-223, several novel combination treatment strategies are currently eliciting considerable research interest.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Scimeca ◽  
Nicoletta Urbano ◽  
Bonfiglio Rita ◽  
Sarah Natalia Mapelli ◽  
Carlo Vittorio Catapano ◽  
...  

The main aim of this study was to investigate the putative association among the presence of prostate cancer cells, defined as prostate osteoblast-like cells (POLCs), and showing the expression of typical morphological and molecular characteristics of osteoblasts, the development of bone metastasis within 5 years of diagnosis, and the uptake of 18F-choline evaluated by PET/CT analysis. To this end, prostate biopsies (n= 110) were collected comprising 44 benign lesions and 66 malignant lesions. Malignant lesions were further subdivided into two groups: biopsies from patients that had clinical evidence of bone metastasis (BM+,n= 23) and biopsies from patients that did not have clinical evidence of bone metastasis within 5 years (BM−,n= 43). Paraffin serial sections were obtained from each specimen to perform histological classifications and immunohistochemical (IHC) analysis. Small fragments of tissue were used to perform ultrastructural and microanalytical investigations. IHC demonstrated the expression of markers of epithelial-to-mesenchymal transition (VIM), bone mineralization, and osteoblastic differentiation (BMP-2, PTX-3, RUNX2, RANKL, and VDR) in prostate lesions characterized by the presence of calcium-phosphate microcalcifications and high metastatic potential. Ultrastructural studies revealed the presence of prostate cancer cells with osteoblast phenotype close to microcalcifications. Noteworthy, PET/CT analysis showed higher uptake of 18F-choline in BM+ lesions with high positivity (≥300/500 cells) for RUNX2 and/or RANKL immunostaining. Although these data require further investigations about the molecular mechanisms of POLCs generation and role in bone metastasis, our study can open new and interesting prospective in the management of prostate cancer patients. The presence of POLCs along with prostate microcalcifications may become negative prognostic markers of the occurrence of bone metastases.


Sign in / Sign up

Export Citation Format

Share Document