scholarly journals EEG-riculture: Sustainability and Butterfly-Effects

2020 ◽  
Vol 1 (1) ◽  

The motivational background of this paper is to shed new light on the phenomena of butterfly effect and sustainability from a scientific-philosophical and mathematical point of view. We aim to reveal the connection between butterfly effect and sustainability by observing the observer him- or herself and exploring the most significant errors of thinking and operation of the subject, while analyzing the peculiarities of the butterfly effect. Our reasoning is based on cognitive science approach, agricultural scientific experiments, and on parallel EEG (electroencephalogram) measurements. The latter, emerged from the research area of Innoria’s Team Flow Research Team, is a completely new methodological approach in the field of cognitive science on the basis of previous comparative behavioral scientific results1, but built up on new technological opportunities and professional standpoint2,3. As a result, we can see a new contexts and define problems in measurement methodology, while researching the interactions of human minds. These EEG measurements are part of an extensive research, which focuses on the identification of the parallel perception of reality and the synchronized perception-reaction relation of human beings. In the philosophy of science approach the butterfly effect is always provided by the observer by using in his/her rationing the indicator 'small' or 'seemingly insignificant', while one finds that the effect is not linearly related to such approximate (quantitative) attributes of the cause. The consequence is unexpectedly, unpredictably large, as compared to the observer's expectations. Therefore, the problem requires a change of perspective, namely, one needs to confer much greater importance to small causes. To discover these causes, we need to explore the mechanism of human observation much more intensively. The mathematical objective of the paper is to demonstrate an explored butterfly-effect process, based on a real, but anonymous parallel measured EEG data asset, where each step is reproducible. The problems that need to be solved are: (i) How can we classify correctly over EEG measurements the personal time series data (raw individual EEG data series with 0.25 second sampling) within the frame of similarity analysis? (ii) How to deal with the butterfly effect? (iii) How to step forward on the theoretical path of chaotic systems4 designated by Edward N. Lorenz? The butterfly-effect is the unexpected difference between the result of a classification based on a given data asset and the result of another classification, based on a data asset, having just one additional record as the input; in this case, we have data at about every 0.25 s, where the used length of the time series can be over 100 or 1000. Differences will be derived by means of ranked inputs – especially in case of data having the same value. Similarity analysis is a typical ranking-oriented modelling scheme, where these special effects can be detected at once, without the need for any further manipulations. Since similarity analysis produces model chains, symmetry-driven similarity analyses can have, as well, butterfly-effects in a consistence-oriented model structure. Sustainability can be regarded as a mathematical issue5, being a dynamic phenomenon. Sustainability may be redefined as a capability of forecasting system behavior. Random-like, not-planned incidents cannot be accepted as sustainable and realized plan values. The most trivial usage of the ‘here and now’ characterized sustainability approach is precision farming and its analogy, the EEG-riculture, as such.

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


2011 ◽  
Vol 5 (Suppl 2) ◽  
pp. S15 ◽  
Author(s):  
Li C Xia ◽  
Joshua A Steele ◽  
Jacob A Cram ◽  
Zoe G Cardon ◽  
Sheri L Simmons ◽  
...  

2015 ◽  
Vol 63 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Khnd Md Mostafa Kamal

Currency exchange rate is an important aspect in modern economy which indicates the strength of domestic currency with respect to international currency. This study uses 42 years’ (1972 to 2013) time series data for Bangladesh in order to empirically determine whether the real exchange rate has significant impact on output growth for Bangladesh by using error correction model (ECM).The time series econometrics properties of the data series have been thoroughly investigated to apply ECM approach. The empirical evidence suggests mixed results; in the short run low exchange rate has positive significant effect while in the long run output growth is positively affected high exchange rate pass through.Dhaka Univ. J. Sci. 63(2):105-110, 2015 (July)


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yufeng Yu ◽  
Yuelong Zhu ◽  
Shijin Li ◽  
Dingsheng Wan

In order to detect outliers in hydrological time series data for improving data quality and decision-making quality related to design, operation, and management of water resources, this research develops a time series outlier detection method for hydrologic data that can be used to identify data that deviate from historical patterns. The method first built a forecasting model on the history data and then used it to predict future values. Anomalies are assumed to take place if the observed values fall outside a given prediction confidence interval (PCI), which can be calculated by the predicted value and confidence coefficient. The use ofPCIas threshold is mainly on the fact that it considers the uncertainty in the data series parameters in the forecasting model to address the suitable threshold selection problem. The method performs fast, incremental evaluation of data as it becomes available, scales to large quantities of data, and requires no preclassification of anomalies. Experiments with different hydrologic real-world time series showed that the proposed methods are fast and correctly identify abnormal data and can be used for hydrologic time series analysis.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Miguel García ◽  
José Alloza ◽  
Ángeles Mayor ◽  
Susana Bautista ◽  
Francisco Rodríguez

AbstractModerate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.


2019 ◽  
Vol 45 (2) ◽  
pp. 551
Author(s):  
A. Salaberria ◽  
G. García-Baquero ◽  
I. Odriozola ◽  
A. Aldezabal

Because primary productivity is related both with the energy that sustains food webs and with species diversity, it is usually considered a key ecosystem property and a reliable indicator of available forage. In this work the aboveground net primary production (ANPP) of an Atlantic mountain grassland system was modelled in order to attempt producing short-term forecasts. Since grazing influences productivity, two treatment levels (grazing and exclusion) were experimentally applied in each of three field sites. Monthly ANPP data were then collected over three consecutive vegetative periods (2006-2008), thereby obtaining six time series (one per plot). Since no significant differences among sites (within treatments) were found, these six series were later reduced through averaging to only two series (one per treatment level). Two kinds of statistical models were then used to attempt monthly ANPP forecasting: exponential smoothing methods and ARIMA models. Both methodologies turned out to produce inadequate forecasts due to the presence of marked local features (innovative outliers) in our relatively short time-series data. Nonetheless, useful information for a more innovative shepherding management was revealed (e.g. the presence of within-year variation in ANPP, and differences between the grazing and exclusion treatments). Longer data series, which would require a more demanding effort in sampling investment, are likely necessary in order to obtain adequate forecasts using these time series methodologies.


2020 ◽  
Vol 28 (2) ◽  
pp. 56-62
Author(s):  
Mária Ďurigová ◽  
Kamila Hlavčová ◽  
Jana Poórová

AbstractAn analysis of a hydrological time-series data offers the possibility of detecting changes that have arisen due to climate change or change in land use. This paper deals with the detection of changes in the hydrological time data series. The trend analysis was applied at 58 stage-discharge gauging stations that are located throughout Slovakia, with the measurement period from 1962 to 2017. The Mann-Kendall test show a declining trends in the summer and a few rising trends in the winter in discharges. In the town of Banská Bystrica at a station on the Hron River, decades of discharges, air temperatures, and precipitation totals were analyzed. The five decades from the 1960s to the 2000s were used. The hydrological time data series were also analyzed by the Pettitt’s test, which is used to detect change points. The decadal analysis at the Banská Bystrica station shows an increase in the air temperature but insignificant changes in discharges and precipitation. Pettitt’s test identified many change points in the 1990s in the air temperature.


Sign in / Sign up

Export Citation Format

Share Document