Formulation and Evaluation of Sumatriptan Succinate Fast Disintegrating Films and Tablets

Author(s):  
Y. Shravan Kumar ◽  
R Gowthami ◽  
Sujitha H ◽  
Nagaraju T ◽  
Rajashekar M ◽  
...  

Sumatriptan succinate is a 5-HT1B/1D receptor agonist which has well established efficacy in treating migraine. The main objective of the study was to formulate Oral Fast Disintegrating Films (ODF) and Oral Fast Disintegrating Tablets (ODT) to achieve a better dissolution rate and further improving the bioavailability of the drug.  ODFs were prepared by solvent casting method using film forming polymers like HPMC – E15,5cps,50cps in different ratios & prepared batches of films were evaluated for the drug content, film thickness, disintegration time  and in vitro dissolution studies. Among the prepared formulation F7 containing HPMC – 50cps (drug: polymer ratios = 1:1) was found to be best formulations which releases 98.2±1.1of the drug within 17±0.02 sec. ODTs prepared by direct compression method using in different concentrations of super-disintegrants. The prepared formulation T12 (combination of disintegrants) containing CP + CCS (6%) was considered to be the best formulation, which releases up to 100±0.38% of the drug in 23±0.75 sec, respectively. Based on these results, it is suggested that ODFs have faster disintegration time and drug release than ODTs.  

Author(s):  
S. Jyothi Sri ◽  
D.V. R.N Bhikshapathi

The present investigation was aimed with the objective of developing fast dissolving oral films of Aripiprazole to attain quick onset of action for the better management of Schizophrenia. Fourteen formulations (F1-F14) of Aripiprazole mouth dissolving films by solvent-casting method using HPMC E5, HPMC E15, Maltodextrin, PG and PVA. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F13 showed minimum disintegration time 10 sec, maximum drug was released i.e. 99.49 ± 0.36% of drug within 8 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions take place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 20.73 ± 0.25 after 8 min. Therefore, it can be a good alternative to conventional Aripiprazole for immediate action. In vitro evaluation of the Aripiprazole fast dissolving oral films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Aripiprazole. The mouth dissolving film is potentially useful for the treatment of Schizophrenia where the quick onset of action is desired.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 107-110
Author(s):  
Aashish Marskole ◽  
Sailesh Kumar Ghatuary ◽  
Abhishek Parwari ◽  
Geeta Parkhe

Oral fast dissolving midodrine hydrochloride films prepared by solvent casting method, PEG 400 was the selected plasticizers, incorporating superdisintegrants such as croscarmellose sodium (CCS) and sodium starch glycolate (SSG) to achieve the goal. Drug content, weight variability, film thickness, disintegration time, endurance, percentage of moisture content, and in vitro dissolution tests were analyzed for the prepared films. In all formulations, the tensile strength value was found from 0.965±0.045 and 1.256±0.032 and the folding capacity was over 100. The assay values ranged from 97.98±0.25 to 99.89±0.36 percent for all formulations. The disintegration time was ranging between 55±9 to 120±6 sec, the minimum time for disintegration was found in formulation F5 (55±9). The prepared F5 formulation shows greater release of the drug (99.25±0.41 percent) within 15 min relative to other formulations. As the drug having low solubility, fast disintegration may leads to more drug availability for dissolution, resulting in faster absorption in systemic circulation increased systemic availability of drug leads to quick onset of action which is prerequisite for hypertension. Keywords: Midodrine hydrochloride, Fast dissolving films, Solvent casting method, Superdisintegrants.


Author(s):  
Sanket Jain ◽  
Sujit Pillai ◽  
Rampal Singh Mandloi ◽  
Nikhlesh Birla

Ondansetron is an anti-emetic drug which is insoluble in water. The present study was aimed to formulate and evaluate oral fast dissolving tablet of Ondansetron by Utilizing Liquisolid Compact Technique. The tablets were prepared by direct compression method and characterized by UV, FTIR studies. Six formulations (F1-F6) of ondansetron were prepared and tablets were evaluated for weight variations, hardness, thickness, friability, disintegration time, drug content and In-vitro dissolution studies gave satisfactory result. TF6 was found to be the best and acceptable formulation whose drug content was about 99.17±0.05 and percentage (%) drug release 97.49±2.03 in 10 min, high as compare to other formulation and has low disintegration time 17±0.01 as compare to other formulation which indicates that drug is rapidly dissolved and available at the site of action.


Author(s):  
Y Shravan Kumar ◽  
Deepthi B ◽  
Mounika M

Salbutamol is a short-acting, selective beta-2-adrenergic receptor agonist used in treatment of asthma and COPD. In the present work, sublingual films of Salbutamol sulphate were developed with a view to enhance the patient compliance and provide quick onset of action. Salbutamol has a bioavailability of 53 - 60%. The goal of the study was to formulate sublingual films of Salbutamol sulphate to achieve a better dissolution rate and further improving the bioavailability of the drug. Sublingual films prepared by solvent casting method using film forming polymers HPMC-E5, HPMC-E15 and Maltodextrin in different ratios. The prepared batches of films were evaluated for the drug content, weight variation, film thickness, disintegration time and in vitro dissolution studies. Among all, the formulation B1 containing HPMC-E15 with a drug: polymer ratio (1:6) was found to be the best formulation which showed 98.36% of the drug release within 15 minutes and disintegration time 18 sec. This study shows the viability of developing sublingual films of salbutamol.    


Author(s):  
Sudhakar Kancharla ◽  
Prachetha Kolli ◽  
Dr.K.Venkata Gopaiah

Oral Disintegrating Tablets of Triazolam were formulated with an aim to improve the versatility, patient compliance, and accurate dosing. The formulations ere developed with an objective to use by the pediatric and geriatric patients. Triazolam Oral Disintegrating Tablets were prepared by direct compression method using cross povidone, croscarmellose sodium, sodium starch  glycolate and combinations of CP+CCS, and CP + SSG as super disintegrates exhibited good pre-formulation and tableting properties of three super disintegrates, the formulation contained combination of CP + CCS showed better performance in terms of disintegration time when compared to other formulations. Order of the super disintegrates activity is as follows. (CP + CCS) > (CP + SSG) > CP > CCS >SSG The formulation F15 was found to be the best among all twenty Triazolam ODT formulations because it has exhibited faster disintegration time (17.66 sec) when compared to the other formulations and it showed 99.87±0.18% drug release at the end of 25 min. Triazolam Oral Disintegrating Films were prepared by solvent casting method using different grades of Hydroxypropyl Methyl Cellulose like HPMC – E15, HPMC – 5cps, HPMC – 50cps. Based on disintegration and dissolution results it was concluded that the formulation F15 contained CP 5% + CCS 5% was the best formulation among all otherformulations.


Author(s):  
Manish Khadka ◽  
Dharma Prasad Khanal ◽  
Deepti Piya Baniya ◽  
Prakash Karki ◽  
Saurav Shrestha

Orally disintegrating tablets of Furosemide were prepared, evaluated and the comparison of the action of different concentrations of disintegrants on disintegration and dissolution of the tablets were studied. Direct compression method was used to prepare the orally disintegrating tablets containing 20 mg of Furosemide. The formulation was conducted using different concentrations of crospovidone, croscarmellose and sodium starch glycolate as superdisintegrants and their interactions with Furosemide were also evaluated using FTIR.  FTIR studies using the drug and its mixtures with the excipients showed that the peaks correlate with one another which signify that there is no interaction between the drug molecule and the excipients used. The obtained results revealed that the disintegration time of ODTs were between 9 to 59 seconds. The percentage drug content of tablets in all the formulations was found between 91.51% to 106.69%, which complies with the limits established in pharmacopoeia. The in-vitro dissolution studies show maximum release of 89.47% in formulation F3 and minimum of 77.64% in formulation F12. Higher concentration of crospovidone and croscarmellose in formulations F3 and F6 showed better dissolution properties than SSG. So by varying the concentrations of superdisintegrants, oral disintegrating tablets can be formulated.


Author(s):  
SHALLY SHARMA ◽  
NIMRATA SETH ◽  
NARESH SINGH GILL

Objective: The present study aims to formulate and evaluate Fast dissolving tablet of Buspirone, the drug that is used for management of anxiety, by direct compression method using various Super disintegrants. Methods: Ten formulations (F1-F10) of fast dissolving tablets of Buspirone were prepared by using various Superdisintegrants. The prepared tablets were evaluated for hardness, friability, thickness, drug content uniformity, water absorption, wetting time, and disintegration time and in vitro dissolution study. Results: Among all the formulations, F10 (containing 5 mg of Coprocessed (CS: SSG 1:2) Superdisintegrants) was considered to be the best formulation, which released up to 98% drug in 20 min as compared to a marketed conventional dosage form which dissolves in approx 60 min. The results of stability study of formulation F10 after a period of two months indicated that the formulation was stable. Conclusion: It was concluded that a fast-dissolving tablet of Buspirone containing various Superdisintegrants is better and effective to meet patient compliance.


Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  


Sign in / Sign up

Export Citation Format

Share Document