scholarly journals Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations

2016 ◽  
Vol 103 (1) ◽  
pp. 140-152 ◽  
Author(s):  
Heather E. Schneider ◽  
Susan J. Mazer
Author(s):  
Céline Teplitsky ◽  
Anne Charmantier

There is now overwhelming evidence that the recent rapid climate change has multiple consequences for birds: their abilities to adapt to climate change is thus a major issue. To understand the evolutionary consequences of climate change, an assessment of how it alters selection pressures is needed. As expected, climate change increases selection for earlier breeding but non-intuitive selection patterns are likely to arise for traits other than phenology. Evolutionary responses to these new selection pressures depend on the evolutionary potential in wild bird populations. Heritability alone is not sufficient to predict responses to selection, as many genetic factors (e.g., genetic correlations, indirect genetic effects) can affect evolutionary trajectories. Altogether, studies investigating the nature of responses to climate change in wild populations (plastic vs microevolutionary responses) are still scarce but suggest that the majority of responses would be due to plasticity.


Author(s):  
Peter D Howe ◽  
Matto Mildenberger ◽  
Jennifer R. Marlon ◽  
Anthony Leiserowitz

2020 ◽  
Author(s):  
Merga Bayssa ◽  
Sintayehu Yigrem ◽  
Simret Betsa ◽  
Adugna Tolera

AbstractIntroductionClimate change has devastating effects on livestock production and productivity, which could threaten livestock-based food security in pastoral and agro-pastoral production systems of the tropics and sub-tropics. Hence, to sustain livestock production in an environment challenged by climate change, the animals must have the ability to survive and produce under extreme conditions. Boran cattle breed is one of the hardiest Zebu cattle reared by Borana Oromo pastoralists for milk and meat production. This paper aims to compile the main production, reproduction and adaptation traits of Boran cattle based on systematic review amd meta-analysis of peer reviewed and published articles on the subject.MethodologyCombination of systematic review and meta-analysis based on PRISMA guideline was employed. Accordingly, out of 646 recorded articles identified through database searching, 64 were found to be eligible for production, reproduction and adaptation characteristics of the Boran cattle, twenty-eight articles were included in qualitative systematic review while 36 articles were used for quantitative meta-analysis.ResultBoran cattle have diversity of adaptation (morphological, physiological, biochemical, metabolic, cellular and molecular) responses to the effects of climate change induced challenges - notably high temperature and solar radiation, rangeland degradation, seasonal feed and water shortages and high incidences of tropical diseases. Meta-analysis using a random-effects model showed estimates of heritability and genetic correlations for reproduction and production traits. In addition, heritability and genetic-correlation estimates found in the present study suggest that there is high genetic variability for most traits in Boran cattle, and that genetic improvement is possible for all studied traits in this breed.ConclusionThe review revealed that Boran cattle exhibit better reproduction, production and adaption potentials as compared to other indigenous zebu cattle breeds in Ethiopia under low-land, poor pasture and water conditions. On other hand, the breed is currently challenged by adverse effects of climate change and other management factors such as high rate of genetic dilution, reduced rangeland productivity, lack of organized breed improvement programs and discriminate selection of gene pool. Thus, we recommend strategic breed improvement and genetic conservation program of Boran cattle breed in collaboration with Borana pastoralists through proper quantification of important traits and estimation of the pure Boran cattle population while controlled cross breeding strategy could be used in urban and peri-urban areas for maximum utilization of adapataion and production pottential of this breed.


2021 ◽  
Vol 288 (1962) ◽  
Author(s):  
Vera M. Warmuth ◽  
Malcolm D. Burgess ◽  
Toni Laaksonen ◽  
Andrea Manica ◽  
Marko Mägi ◽  
...  

Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers ( Ficedula hypoleuca ). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian–Weichselian transition 115–104 thousand years ago (kya), and not during the last glacial maximum (26.5–19 kya), as previously suggested. The magnitude and rates of climate change during the glacial–interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.


2020 ◽  
Vol 287 (1928) ◽  
pp. 20201029 ◽  
Author(s):  
Justin Walsh ◽  
Luigi Pontieri ◽  
Patrizia d'Ettorre ◽  
Timothy A. Linksvayer

In social insects, cuticular hydrocarbons function in nest-mate recognition and also provide a waxy barrier against desiccation, but basic evolutionary features, including the heritability of hydrocarbon profiles and how they are shaped by natural selection are largely unknown. We used a new pharaoh ant ( Monomorium pharaonis ) laboratory mapping population to estimate the heritability of individual cuticular hydrocarbons, genetic correlations between hydrocarbons, and fitness consequences of phenotypic variation in the hydrocarbons. Individual hydrocarbons had low to moderate estimated heritability, indicating that some compounds provide more information about genetic relatedness and can also better respond to natural selection. Strong genetic correlations between compounds are likely to constrain independent evolutionary trajectories, which is expected, given that many hydrocarbons share biosynthetic pathways. Variation in cuticular hydrocarbons was associated with variation in colony productivity, with some hydrocarbons experiencing strong directional selection. Altogether, this study builds on our knowledge of the genetic architecture of the social insect hydrocarbon profile and indicates that hydrocarbon variation is shaped by natural selection.


Author(s):  
Mark A. McPeek

This book investigates how local and regional patterns of community structure develop across space and through time by focusing on the theoretical interrelationships among community ecology, evolutionary adaptation, dispersal, and speciation and extinction. It discusses the purely ecological dynamics of interacting species in different community modules, how species in simple community modules evolve to adapt to one another, and how speciation and biogeographic mixing of taxa influence local community structure. It also examines community mixing due to climate change and how regional community structure is shaped by the ecological and evolutionary dynamics of species across a metacommunity. This introduction provides an overview of the evolutionary trajectories of various species in the context of ecological opportunity and community ecology, aggregated taxa in the trophic web, types of species found in a community, sources of biodiversity in a community, and the dynamics of natural selection, coevolution, and community structure.


Oecologia ◽  
2008 ◽  
Vol 155 (4) ◽  
pp. 845-857 ◽  
Author(s):  
Anders Pape Møller

Sign in / Sign up

Export Citation Format

Share Document