Ecological Opportunities, Communities, and Evolution

Author(s):  
Mark A. McPeek

This book investigates how local and regional patterns of community structure develop across space and through time by focusing on the theoretical interrelationships among community ecology, evolutionary adaptation, dispersal, and speciation and extinction. It discusses the purely ecological dynamics of interacting species in different community modules, how species in simple community modules evolve to adapt to one another, and how speciation and biogeographic mixing of taxa influence local community structure. It also examines community mixing due to climate change and how regional community structure is shaped by the ecological and evolutionary dynamics of species across a metacommunity. This introduction provides an overview of the evolutionary trajectories of various species in the context of ecological opportunity and community ecology, aggregated taxa in the trophic web, types of species found in a community, sources of biodiversity in a community, and the dynamics of natural selection, coevolution, and community structure.

Author(s):  
Mark A. McPeek

This chapter examines the ecological and evolutionary dynamics of species across a metacommunity, and how these dynamics affect regional community structure. It begins with a discussion of the evolution of dispersal, focusing on when movement between local communities is and is not favored by natural selection, and how these various movement patterns shape local community structure. An example of the demographic consequences of dispersal is presented, and the evolution of dispersal in a temporally constant environment is analyzed. The chapter also considers the evolution of dispersal rates among communities along with local adaptation within each and explains how link species affect local abundances via their movement strategies. Finally, it explores the interplay between local adaptation and dispersal evolution, the impact of simultaneous spatial and temporal variation in environmental conditions on the evolution of dispersal among populations, and the evolution of phenotypic plasticity.


Author(s):  
Mark A. McPeek

This chapter considers the main processes that operate at the regional and biogeographic scales to ultimately shape local community structure—namely, speciation and biogeographic mixing of taxa. It first defines what a “species” is before discussing the range of mechanisms that give rise to new species, and more specifically reproductive isolation. In particular, it examines the extent to which the speciation process directly induces differences in ecologically important traits between the progenitor and daughter species. It then explains how the phenotypic differences generated at the time of speciation determine what type of community member the new species begins as. It also shows how past climate change affected current local and regional community structure by periodic forcing of mass movements of species across Earth and causing increases in speciation and extinction rates. Finally, it evaluates the dynamics of invasive species and their role in habitat alteration today.


2018 ◽  
Author(s):  
Easton R White ◽  
Kalle Parvinen ◽  
Ulf Dieckmann

The phenology, or timing of life history events, of organisms affects both ecological and evolutionary dynamics. Recent work has illustrated the effects of climate change on the phenology for many species. Changing selective pressures on phenology can have consequences for species if the reliability of phenological cues decreases or if climate change affects interacting species differentially. There are now numerous examples, in which earlier mean timing of spring has selected for earlier phenology of organisms. However, much less is known about how changes in the variability of spring — and consequently the reliability of cues — might affect species. We built a general model of animal population dynamics to study both the ecology and evolution of phenological events under climate change. We parameterized this model for a population of the collared pika (Ochotona collaris) found in the Yukon, Canada. In line with past work, we show that an earlier timing of spring snowmelt will select for an earlier timing of reproduction. In addition, we show that variability in the onset of spring also selects for earlier reproduction. However, evolution or plasticity in juvenile mortality, due to late snowmelt, can lead to later reproduction. These results highlight the importance of looking at the variability, and not only the mean, in spring onset. The specific relationship between the mean and variability of spring onset coupled with the ability of a population to be plastic or adaptable will determine the long-term effects of climate change on the phenology of species.


2018 ◽  
Author(s):  
Easton R White ◽  
Kalle Parvinen ◽  
Ulf Dieckmann

The phenology, or timing of life history events, of organisms affects both ecological and evolutionary dynamics. Recent work has illustrated the effects of climate change on the phenology for many species. Changing selective pressures on phenology can have consequences for species if the reliability of phenological cues decreases or if climate change affects interacting species differentially. There are now numerous examples, in which earlier mean timing of spring has selected for earlier phenology of organisms. However, much less is known about how changes in the variability of spring — and consequently the reliability of cues — might affect species. We built a general model of animal population dynamics to study both the ecology and evolution of phenological events under climate change. We parameterized this model for a population of the collared pika (Ochotona collaris) found in the Yukon, Canada. In line with past work, we show that an earlier timing of spring snowmelt will select for an earlier timing of reproduction. In addition, we show that variability in the onset of spring also selects for earlier reproduction. However, evolution or plasticity in juvenile mortality, due to late snowmelt, can lead to later reproduction. These results highlight the importance of looking at the variability, and not only the mean, in spring onset. The specific relationship between the mean and variability of spring onset coupled with the ability of a population to be plastic or adaptable will determine the long-term effects of climate change on the phenology of species.


2021 ◽  
Vol 1 (1) ◽  
pp. 65
Author(s):  
James Kimani

Purpose: Climate warming affects the phenology, local abundance and large‐scale distribution of bees. Despite this, there is still limited knowledge of how climate affect plant‐pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. This article reviews the evidence of climate warming effects on bee farming and discuss how their interactions may be affected by change in climate. Bees provide the majority of biotic pollination and are at risk from a multitude of factors; changes in land use, intensive agricultural practices, mono-cropping (growing a single crop year after year on the same land), and the use of pesticides have all contributed to large-scale losses, fragmentation and degradation of bee habitat. The general objective of the study was to establish the effect of effect of climate change on bee farming.    Methodology: The paper used a desk study review methodology where relevant empirical literature was reviewed to identify main themes and to extract knowledge gaps. Findings: The study found out Climate change is causing temperature shifts which are leaving bees unable to pollinate in time. Bees are severely vulnerable to extreme weather and climate change has caused flowers to emerge and bloom earlier. Changing temperatures have also reduced the size of their wild range by approximately five miles. Recommendations: The study recommends that the local community needs to be enlightened on the need to form self-help group. These will provide them a platform to access more incentives and be able to share more information in relation to honey yield and to put more emphasis on providing food and water to bees during dry season  


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2021 ◽  
Vol 9 (1) ◽  
pp. 4-19
Author(s):  
Shannon Butts ◽  
Madison Jones

This article shares lessons from designing <u>EcoTour</u>, a multimedia environmental advocacy project in a state park, and it describes theoretical, practical, and pedagogical connections between locative media and community-engaged design. While maps can help share information about places, people, and change, they also limit how we visualize complex stories. Using deep mapping, and blending augmented reality with digital maps, EcoTour helps people understand big problems like climate change within the context of their local community. This article demonstrates the rhetorical potential of community-engaged design strategies to affect users, prompt action, and create more democratic discourse in environmental communication.


2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


Sign in / Sign up

Export Citation Format

Share Document