scholarly journals Implementation of an NGS panel for clinical practice in paraffin-embedded tissue samples from locally advanced and metastatic melanoma patients

2020 ◽  
Vol 1 (2) ◽  
pp. 101-108
Author(s):  
Paola Castillo ◽  
Marta Marginet ◽  
Pedro Jares ◽  
Mireia García ◽  
Elena Gonzalvo ◽  
...  

Aim: Single biomarker diagnostic test of BRAFV600 locus in metastatic melanoma is mandatory for treatment decision; however, multiple-gene based techniques, such as targeted next-generation sequencing (NGS) are being used to maximize the number of patients that can benefit from a targeted therapy. The main objective of this study is to investigate whether an NGS panel could be adopted in routine clinical care for advanced melanoma. Methods: Patients diagnosed with advanced melanoma at our center from 2017 to 2019 were included. Presence of genetic alterations was performed using two methods: real-time polymerase chain reaction-based Idylla test (Biocartis) and NGS with the oncomine solid tumor DNA kit (Thermo Fisher Scientific). Total genomic DNA was extracted from formalin-fixed and paraffin embedded samples for sequencing. Results: A total of 155 samples were evaluated for molecular analysis but 40 samples (25.8%) were inadequate for sequencing. The clinical utility of BRAFV600 real-time polymerase chain reaction and targeted-NGS was compared in 29 samples and a very good concordance was observed (Kappa = 0.89, 95% confidence interval 0.68 ± 1.05). An oncogenic mutation by NGS was found in 75 samples (65%) – 53% of whom were candidates for personalized therapies. The most prevalent mutated genes were BRAF (39%), TP53 (23%), and NRAS (14%). Other genes identified at lower incidence (< 5%) were: PIK3CA, ERBB4, CTNNB1, STK11, FGFR1, SMAD4, KRAS, FGFR3, PTEN and AKT. Co-occurrence of oncogenic mutations was detected in 40% of the samples. Among the mutations identified, TP53 was significantly more prevalent in men (men 31.8% versus women 12.2%, P = 0.03) and NRAS in women (men 9.1% versus women 24.4%, P = 0.03). Conclusions: Targeted-NGS testing is a feasible technique to implement in the routine clinical practice. Based on our results, NGS has provided more information on target-genes than RT-PCR technique, maximizing the benefit for patients with advanced melanoma.

Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

Sign in / Sign up

Export Citation Format

Share Document