scholarly journals Damage Analysis of Composite Sheet Under Thermal Load

2022 ◽  
Vol 58 (4) ◽  
pp. 130-137
Author(s):  
Amer Karnoub ◽  
Koast Parkizdins ◽  
Antypas Imad Rezakalla ◽  
Dyachenko Alexey Gennadyevech

The goal of this research is to carry out a 3-dimensional finite detail approach evaluation of a composite plate cracked under thermal loading. The results of the mechanical properties of the composite, the orientation angle of the fibers, the geometric form of the plate, the thermal loading and the crack length had been studied to show their influence on the variation of the integral J. It is concluded that the integral J increases with the increase of crack size, temperature variation and reduce in fiber orientation perspective (e). To complete the work a probabilistic analysis was carried out.

2014 ◽  
Vol 709 ◽  
pp. 144-147
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Optimization of fiber orientation angle is studied to minimize the deflection of the laminated composite plates by the genetic algorithm. The objective function of optimization problem is the minimum deflection of laminated composite plates under the external load; optimization parameters are fiber orientation angle of laminated composite plates. The results for the optimal fiber orientation angle and the minimum deflection of the 4-layer plates are presented to demonstrate the validity of present method.


1994 ◽  
Vol 353 ◽  
Author(s):  
D. Stahl ◽  
J. K. McCoy ◽  
R. D. McCright

AbstractThis report focuses on the prediction of materials performance for the carbon steel corrosion-allowance container as a function of thermal loading for the potential repository at Yucca Mountain. Low, intermediate and high thermal loads were evaluated as to their performance given assumptions regarding the temperature and humidity changes with time and the resultant depth of corrosion penetration. The reference case involved a kinetic relation for corrosion that was utilized in a sensitivity analysis to examine the impacts of time exponent, pitting, and microbiologically-influenced corrosion. As a result of this study, the high thermal load appears to offer the best corrosion performance. However, other factors must be considered in making the final thermal loading decision.


2005 ◽  
Vol 297-300 ◽  
pp. 2897-2902 ◽  
Author(s):  
Jin Woo Kim ◽  
Jung Ju Lee ◽  
Dong Gi Lee

The study for strength calculation of one way fiber-reinforced composites and the study measuring precisely fiber orientation distribution were presented. However, because the DB that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed, we need the systematic study for that. Therefore, in this study, we investigated what effect the fiber content ratio and fiber orientation distribution have on the strength of composite sheet after making fiber reinforced polymeric composite sheet by changing fiber orientation distribution with the fiber content ratio. The result of this study will become a guide to design data of the most suitable parts design or fiber reinforced polymeric composite sheet that uses the fiber reinforced polymeric composite sheet in industry spot, because it was conducted in terms of developing products. We studied the effect the fiber orientation distribution has on tensile strength of fiber reinforced polymeric composite material and achieved this results below. We can say that the increasing range of the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation is getting wider as the fiber content ratio increases. It shows that the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation 90° is similar with the value of polypropylene’s intensity when fiber orientation function is J= 0.7, regardless of the fiber content ratio. Tensile strength of fiber reinforced polymeric composite is affected by the fiber orientation distribution more than by the fiber content ratio.


Author(s):  
Chang-Young Oh ◽  
Yun-Jae Kim ◽  
Dong-il Ryu ◽  
P. J. Budden ◽  
R. A. Ainsworth

This paper presents finite element solutions for elastic-plastic J for circumferentially cracked pipes under combined mechanical and thermal loads in terms of the V/Vo factor used within a strain-based failure assessment diagram. In this study, 3-dimensional finite element analyses are conducted to calculate the V-factor under combined mechanical and thermal load. It is found that estimation of V/Vo is sensitive to the method used for its evaluation. For larger thermal stresses, currently proposed estimation methods are overly conservative.


Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


2006 ◽  
Vol 324-325 ◽  
pp. 415-418
Author(s):  
Jin Woo Kim ◽  
Dong Gi Lee

While mold fiber reinforced composite material to problem of occasion that high temperature compression molding, flow length in mold is overlong or when flow meets with resistance in side of mold, fiber orientation happens and big change occurs in strength or quality. Thus, in compression molding that use fiber reinforced composite material, orientation state of fiber in moldings is the most basic element that quotes various properties of matter values. Therefore, to clear orientation state of fiber establishing measurement of fiber orientation angle distribution is very important while give correction of molding condition decision, mechanical quality of moldings and guide about material design. In the study, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.


Author(s):  
Takahisa Nose ◽  
Takao Nakamura ◽  
Takanori Kitada

In order to conduct effective and rational maintenance activity of components in nuclear power plants, it is proposed to manage fatigue degradation based on crack size corresponding to an extent of cumulative fatigue damage. The purpose of this study focuses on the influence of strain rate in simulated reactor coolant environment for fatigue crack initiation and growth. 3-dimensional replica observations were conducted for environmental fatigue test specimens in different strain rates. Crack initiation and growth were observed in the experiments. It is clarified that low strain rate influences crack propagation and coalescence and increases crack growth rate that finally decrease fatigue life.


Sign in / Sign up

Export Citation Format

Share Document