Simulation of Aerobic Granular Sludge Process Efficiency

2017 ◽  
Vol 68 (8) ◽  
pp. 1723-1725
Author(s):  
Elena Elisabeta Manea ◽  
Costel Bumbac ◽  
Olga Tiron ◽  
Razvan Laurentiu Dinu ◽  
Valeriu Robert Badescu

Using aerobic granular sludge for wastewater treatment has multiple advantages compared to conventional activated sludge systems, most important being the ability of simultaneous removal of the pollutants responsible for eutrophication: organic load, compounds of nitrogen (NH4+; NO3-) and phosphorus (PO43-). The advantages are currently exploited for developing the next generation of wastewater treatment systems while the identified limitations are approached by experimental and theoretical researches worldwide. The aim of the study consists in evaluating the possibility of predicting the system�s response to different changes in the influent wastewater loadings. The paper presents simulations results backed up by experimental data for pollutants removal efficiencies evaluation for a sequential batch reactor (SBR) with aerobic granular sludge. The mathematical model is based on the activated sludge model no. 3, which was updated by considering the simultaneous biological nitrification (NH4+NO3) and denitrification (NO3-N2) processes, thus complying with the biochemical reactions occurring in aerobic granular sludge sequential batch reactors. The model developed was validated by the experimental results obtained on a laboratory scale SBR monitored for over a month.

Aerobic granular sludge can be used to treat various types of wastewater, such as industrial, municipal and domestic wastewater. This study investigated the treatment of low-strength domestic wastewater while simultaneously developed aerobic granular sludge in a sequencing batch reactor (SBR). Activated sludge was used as the seeding for granulation. The results indicated good COD and ammoniacal nitrogen removal at 72% and 73%, respectively. Aerobic granular sludge was successfully developed with low sludge volume index (SVI30) of 29 mL/g, which demonstrated an excellent settling property of aerobic granular sludge. Biomass concentration increased significantly compared to the seed sludge, indicating high biomass density in the SBR system. Settling velocity of aerobic granular sludge was significantly higher compared to the conventional activated sludge. This study showed the feasibility of aerobic granular sludge to be developed using low-strength domestic wastewater. Moreover, this study demonstrated the long-term application of aerobic granular sludge in domestic wastewater treatment.


2007 ◽  
Vol 56 (7) ◽  
pp. 55-63 ◽  
Author(s):  
A. Nor Anuar ◽  
Z. Ujang ◽  
M.C.M. van Loosdrecht ◽  
M.K. de Kreuk

Aerobic granular sludge (AGS) technology has been extensively studied recently to improve sludge settling and behaviour in activated sludge systems. The main advantage is that aerobic granular sludge (AGS) can settle very fast in a reactor or clarifier because AGS is compact and has strong structure. It also has good settleability and a high capacity for biomass retention. Several experimental works have been conducted in this study to observe the settling behaviours of AGS. The study thus has two aims: (1) to compare the settling profile of AGS with other sludge flocs and (2) to observe the influence of mechanical mixing and design of the reactor to the settleability of AGS. The first experimental outcome shows that AGS settles after less than 5 min in a depth of 0.4 m compared to other sludge flocs (from sequencing batch reactor, conventional activated sludge and extended aeration) which takes more than 30 min. This study also shows that the turbulence from the mixing mechanism and shear in the reactor provides an insignificant effect on the AGS settling velocity.


2014 ◽  
Vol 54 ◽  
pp. 337-346 ◽  
Author(s):  
Adriana Maria Lotito ◽  
Marco De Sanctis ◽  
Claudio Di Iaconi ◽  
Giovanni Bergna

2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


2004 ◽  
Vol 50 (10) ◽  
pp. 1-10 ◽  
Author(s):  
P.A. Wilderer ◽  
B.S. McSwain

Twenty plus years of experience, innovation, and research in the field of biological wastewater treatment and biofilm applications lead to the conclusion that biofilms are in many cases more desirable in reactors than suspended activated sludge. Biofilm reactors can provide very long biomass residence times even when the hydraulic influent loading is low. This makes them particularly suitable when treatment requires slow growing organisms with poor biomass yield or when the wastewater concentration is too low to support growth of activated sludge flocs. Regardless of the settling characteristics of biological aggregates or the hydraulic influent loading the metabolic activity in the reactor can be maintained at a high level. This paper reviews the application of biofilms in sequencing batch reactor (SBR) systems to treat non-readily biodegradable substrates, volatile organic waste constituents, complex waste streams requiring co-metabolism, and particulate wastewaters. Recent research using the SBR to form aerobic granular sludge as a special application of biofilms is also discussed.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 151-158 ◽  
Author(s):  
B.E. Zima ◽  
L. Díez ◽  
W. Kowalczyk ◽  
A. Delgado

Fluid dynamic investigations of multiphase flow (fluid, air, granules) in a sequencing batch reactor (SBR) are presented. SBR can be considered as an attractive technology for cultivation of granular activated sludge (GAS). Granulation is a complicated process and its mechanism is not fully understood yet. Many factors influence the formation and structure of aerobic granular sludge in a bioreactor. Extracellular polymer substances (EPS) and superficial gas velocity (SGV) play a crucial role for granules formation. Additionally, it is supposed that EPS production is stimulated by mechanical forces. It is also assumed that hydrodynamic effects have a major influence on the formation, shape and size of GAS in SBR under aerobic condition. However, the influence of stress on granulation is poorly investigated. Thus, in the present paper, fluid dynamic investigations of multiphase flow in a SBR, particularly effect of normal and shear strain, are reported. In order to analyse multiphase flow in the SBR, optical in-situ techniques with particle image velocimetry (PIV) and particle tracking velocimetry (PTV) are implemented. Obtained results show a characteristic flow pattern in a SBR. It is pointed out that additional effects like particle-wall collisions, inter particle collisions, erosion can also affect significantly granules formation.


2018 ◽  
Vol 34 ◽  
pp. 02022
Author(s):  
Azlina Mat Saad ◽  
Farrah Aini Dahalan ◽  
Naimah Ibrahim ◽  
Sara Yasina Yusuf ◽  
Siti Aqlima Ahmad ◽  
...  

Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic – anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.


2019 ◽  
Vol 3 (2) ◽  
pp. 45 ◽  
Author(s):  
Shahryar Jafarinejad

Treatment of the petroleum refinery wastewater containing complex chemicals using biological processes is usually challenging because of the inhibition and/or toxicity of these matters when they serve as microbial substrates. In addition, performance modeling and cost evaluation of processes are essential for designing, construction, and forecasting future economic requirements of the petroleum refinery wastewater treatment plants (PRWWTPs). In this study, the performance and economics of conventional activated sludge (CAS) process replacing by sequencing batch reactor (SBR) technology in a two train PRWWTP were evaluated using simulation. The final treated effluent characteristics for the PRWWTPs containing CAS + CAS and SBR + CAS processes under steady state conditions were studied and evolution of the main parameters of the final effluent during the 30 days of simulation for these plants were investigated. Finally, the total project construction, operation labor, maintenance, material, chemical, energy, and amortization costs of these plants were estimated and compared. Results demonstrated that the project construction cost of PRWWTP containing CAS + CAS processes was lower than that of PRWWTP containing SBR + CAS processes and the energy and amortization costs for both plants were higher in comparison with the operation, maintenance, material, and chemical costs. Note that this study is a computer simulation and drawing general conclusions only on the basis of computer simulation may be insufficient.


Author(s):  
Nurazizah Mahmod ◽  
Norhaliza Abdul Wahab

Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30˚C, 40˚C and 50˚C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature.


Sign in / Sign up

Export Citation Format

Share Document