scholarly journals Identification of Iron-Sulfur Oxidizing Bacteria and Properties of Iron Oxidizing Bacteria in Metal mine Water (I)

1965 ◽  
Vol 26 (4) ◽  
pp. 152-164
Author(s):  
Atsumi WATANABE ◽  
Takeshi UCHIDA ◽  
Susumu FURUYA
1997 ◽  
Vol 35 (7) ◽  
pp. 187-195 ◽  
Author(s):  
Binle Lin ◽  
K. Futono ◽  
A. Yokoi ◽  
M. Hosomi ◽  
A. Murakami

Establishing economic treatment technology for safe disposal of photo-processing waste (PW) has most recently become an urgent environmental concern. This paper describes a new biological treatment process for PW using sulfur-oxidizing bacteria (SOB) in conjunction with activated carbon (AC). Batch-type acclimation and adsorption experiments using SOB/PAC, SOB/PNAC, and SOB reactor type systems demonstrated that AC effectively adsorbs the toxic/refractory compounds which inhibit thiosulfate oxidization of SOB in PW. Thus, to further clarify the effect of AC, we performed a long-term (≈ 160 d) continuous-treatment experiment on 4- to 8-times dilution of PW using a SOB/GAC system which simulated a typical wastewater treatment system based on an aerobic activated sludge process that primarily uses acclimated SOB. The thiosulfate load and hydraulic retention time (HRT) were fixed during treatment such that they ranged from 0.8-3.7 kg S2O32-/l/d and 7.7-1.9 d, respectively. As expected, continuous treatment led to breakthrough of the adsorption effect of GAC. Renewing the GAC and continuing treatment for about 10 d demonstrated good treatment effectiveness.


2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Author(s):  
Jianxing Sun ◽  
Wenxian Liu ◽  
Ruichang Tang ◽  
Haina Cheng ◽  
Ronghui Liu ◽  
...  

1993 ◽  
Vol 39 (4) ◽  
pp. 384-388 ◽  
Author(s):  
Deborah Berthelot ◽  
L. G. Leduc ◽  
G. D. Ferroni

Iron-oxidizing autotrophs and acidophilic heterotrophs were quantified at an incubation temperature of 18 °C in several samples obtained from the bioleaching areas of two uranium mines in Ontario, Canada. All samples were mine-water samples with temperatures in the range 13–18 °C. Iron-oxidizing autotrophs ranged from 2683 ± 377 to 245 000 ± 20 205 colony-forming units∙mL−1 and were always numerically superior to acidophilic heterotrophs, which ranged from 40 ± 8 to 9650 ± 161 colony-forming units∙mL−1. For each sample, approximately 20 isolates of each nutritional group were examined for the ability to grow at temperatures of 4, 18, 21, and 37 °C, respectively; overall, 559 isolates of iron-oxidizing bacteria (predominantly Thiobacillus ferrooxidans) and 252 acidophilic heterotrophic isolates were examined and categorized as 'broader temperature range psychrotrophs,' 'narrower temperature range psychrotrophs,' 'intermediates,' or mesophiles. Although psychrotrophic representatives of both groups were abundant, no psychrophiles were recovered from any of the samples. For the iron oxidizers, the temperature growth profiles of the isolates were similar from sample to sample. For the acidophilic heterotrophs, the temperature growth profiles varied considerably among samples.Key words: psychrotrophs; Thiobacillus ferrooxidans; uranium mines.


Sign in / Sign up

Export Citation Format

Share Document