scholarly journals Application hybrid GSAPSO Technique for AGC in Inter Connected Power System with Generation Rate Constant

2022 ◽  
Vol 20 ◽  
pp. 271-288
Author(s):  
Pabitra Mohan Dash ◽  
Asini Baliarsingh ◽  
Sangram Keshori Mohaptra

An attempt has been taken in this work to effectively implement the combination of GSA and PSO (hGSA-PSO) technique towards AGC in two-area inter-connected power systems with generation rate constraint (GRC) is considered. For the design and analysis, a initial attempt has been taken to optimize parameters of proportional-integral-derivative (PID) controller in two area non-reheat thermal power system employing GSA and hGSA-PSO algorithm with ITAE objective function. A sensitivity studies carried out for the robustness of the system by changing the operating condition and variation of the parameter and generation rate constant (GRC= ±0.05 and ±0.025) is considered. The performances of the proposed controller has been evaluated with those of some previously published optimization techniques such as GA and BOFA based optimized controller parameters for the same power system. This study of the present work is extended to two area multi sources power system to test the robustness analysis of the system by comparing the hGSA-PSO optimized to PI controller with same structure of system by selecting with and without GRC for showing the dynamic performance analysis of the system in term of settling time and overshoot.

Author(s):  
Makarand Sudhakar Ballal ◽  
Hiralal M. Suryawanshi

System islanding is often considered as the final stage of power system defense plans. The goal is to preserve stable areas of the faulted power systems. The islanding scheme plays an important role in the power system restoration phase as it can make the power system restoration less complex and reduce the overall restoration time. The basis for islanding is not standard but rather depends upon the nature of the utility. Even though the formation of islands is dominated by geographical proximity of the synchronous generators to maintain generation-load balance, there are some factors which can assist in designing a better islanding scheme. These factors are the type and location of the fault and the dynamic performance of every island on the system against the fault. This paper present the application of islanding scheme and its performance operation for the scheme commissioned at 132 kV Deepnagar Bhusawal Thermal Power Station (BTPS). The methods and constraints of islanding scheme are discussed in details. Case studies regarding performance of islanding scheme are also described.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3343 ◽  
Author(s):  
Jiyoung Song ◽  
Seungchan Oh ◽  
Jaegul Lee ◽  
Jeonghoon Shin ◽  
Gilsoo Jang

The purpose of this paper is to introduce, examine, and evaluate the industrial experiences and effectiveness of a Thyristor Controlled Series Compensator (TCSC) replica controller installed in Korea in 2019 through a review of its configuration, test platform, and practical application, and further to propose operational guidelines for replica controllers. Four representative practical cases were conducted: a Dynamic Performance Test (DPT) under a sufficiently large-scale power system prior to the Site Acceptance Test (SAT), pre-verification for on-site controller modification during operation stage, parameter tuning to mitigate the control interaction, and time domain simulation for Sub-Synchronous Torsional Interaction (SSTI). None of these four cases can be performed in a Factory Acceptance Test (FAT) or on-site. Therefore, TCSC control performance was accurately verified under the entire Korean power system based on a large-scale real-time simulator, which demonstrated its effectiveness as a powerful tool for operations including multiple power electronics devices. Our review herein of these four practical cases is expected to show the usefulness of replica controllers, to demonstrate their strength to deal with practical field events, and to contribute to the further expansion of the application area from a perspective of electric utility.


2021 ◽  
pp. 0309524X2199245
Author(s):  
Asima Syed ◽  
Mairaj ud din Mufti

For dynamic performance improvement of modern power systems, the use of fast acting energy systems like superconducting magnetic energy storage (SMES) is imperative. In this paper, incorporation of a small rating SMES in a solar and wind power penetrated multi-area power system is proposed. A non-linear neural adaptive predictive controller is used to generate an optimal power command taking into account the converter rating and energy level constraints of SMES unit. The SMES is represented by a control relevant model comprising of a first order lag compensator cascaded by an integrator to translate the hardware constraints pertaining to its coil current into modified power constraints. Moreover for avoiding the sudden SMES outage, the power thresholds are forcibly varied as the SMES current reaches near its maximum and minimum values. The uprightness of the designed scheme is illustrated by simulation studies performed on a three area power system.


2003 ◽  
Vol 40 (2) ◽  
pp. 130-143 ◽  
Author(s):  
C. Palanichamy ◽  
C. Anil Kumar ◽  
Sundar Babu

This paper presents a Windows™-based educational package developed by the authors to provide power systems students with basic training on the environmentally friendly, economic operation of power systems. The suitability of the package has been demonstrated here with the help of a six-generator thermal power system.


Automatic Generation Control of two area multi unit interconnected thermal power system with dynamic participation of Doubly Fed Induction Generator based on the wind turbines. In this work two areas consisting of three unequal turbines both areas are connected to the DFIG based wind turbine. Area 1 consisting of three reheat turbines with Doubly Fed Induction Generator based on wind turbine and area2 consisting of three non reheat turbines with Doubly Fed Induction Generator based on wind turbine and two areas interconnected by tie line. Two different controllers are used, namely PID and cascaded PD-PI controllers. The controllers effectively tuned by hybridization algorithm. 1% step load disturbance is applied in area 1 for analyzing the dynamic performance. The performance of two area multi-unit power system is done in MATLAB/SIMILINK software. The dynamic response of the considered system is compared in terms of undershoots, overshoot and settling times


2021 ◽  
Vol 11 (4) ◽  
pp. 7522-7529
Author(s):  
D. V. Doan ◽  
K. Nguyen ◽  
Q. V. Thai

This study focuses on designing an effective intelligent control method to stabilize the net frequency against load variations in multi-control-area interconnected power systems. Conventional controllers (e.g. Integral, PI, and PID) achieve only poor control performance with high overshoots and long settling times. They could be replaced with intelligent regulators that can update controller parameters for better control quality. The control strategy is based on fuzzy logic, which is one of the most effective intelligent strategies and can be a perfect substitute for such conventional controllers when dealing with network frequency stability problems. This paper proposes a kind of fuzzy logic controller based on the PID principle with a 49-rule set suitable to completely solve the problem of load frequency control in a two-area thermal power system. Such a novel PID-like fuzzy logic controller with modified scaling factors can be applied in various practical scenarios of an interconnected power system, namely varying load change conditions, changing system parameters in the range of ±50%, and considering Governor Dead-Band (GDB) along with Generation Rate Constraint (GRC) nonlinearities and time delay. Through the simulation results implemented in Matlab/Simulink software, this study demonstrates the effectiveness and feasibility of the proposed fuzzy logic controller over several counterparts in dealing with the load-frequency control of a practical interconnected power system considering the aforesaid conditions.


2019 ◽  
Vol 7 (1) ◽  
pp. 105-128 ◽  
Author(s):  
Jitendra Kumar Garg ◽  
Anita Khosla ◽  
Nizamuddin Hakimuddin

This paper presents an application of optimal control theory in multi sources power system by considering natural choice of power plants participating in automatic generation control (AGC) scheme. However, for successful operation of large power system, the natural choices of generation suitable for AGC system are hydro and thermal power plants since gas and nuclear power plants are rarely participates in the AGC scheme. Therefore, this work presents design and implementation of proportional integral (PI) structured optimal AGC controller in the presence of hydro and thermal power plants by using state vector feedback control theory. Moreover, various case studies are identified to obtain: (i) Cost aspects of physical realization of optimal AGC controller, (ii) Closed loop system stability margin through patterns of eigenvalues and (iii) System dynamic performance. Further, results have shown that when optimal AGC scheme is implemented in power system, the dynamic performance of power system is outstanding over those obtained with genetic algorithms (GAs) tuned PI structured AGC controller. Besides, with optimal AGC controller, cheaper cost of control structure, increased in system closed loop stability margin and outstanding dynamic performance of power system have been found when lessening in hydro generation is replaced by generation from thermal power plants for various case studies under investigation.


Sign in / Sign up

Export Citation Format

Share Document