scholarly journals Modeling of Detonation Processes in Propulsion Engine

2020 ◽  
Vol 15 ◽  

Numerical modeling of chemically reacting gas flow in the propulsion chamber using theNavier-Stokes equations has been performed. The simplest form of the chamber has been used, when thelast one represents axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separatelywith outflow to the periphery. The directions of fuel and oxidizer jets are not at right angles to the inflowsurface and not parallel one to another to supply better mixing of species. The detonation triggeringdepends on the values of angles between fuel and oxidizer jets. At parallel directions of the jetssignificant part of not reacted gas components leaves the chamber. This type of the propulsion chamber ismore effective than one studied before, because of absence of stagnation zones and good mixing ofspecies before burning. The diameter of the chamber may be done less, since the largest part of fuelreacted at the inlet surface.

2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


Author(s):  
J.-S. Zhang ◽  
Y. Zhang ◽  
C. Zhang ◽  
D.-S. Jeng

In this paper, a numerical model is developed to study the dynamic response of a porous seabed to combined wave-current loadings. While the Reynolds-averaged Navier–Stokes equations with k-ε turbulence closure scheme and internal wave-maker function are solved for the phenomenon of wave-current interaction, Biot's poro-elastic “u-p” model is adopted for the seabed response. After validated by the laboratory measurements, this model is applied for the investigation of the effects of waves and currents on the wave-current induced pore pressures. Furthermore, the effects of currents on maximum liquefaction depths of a porous seabed is examined, and it is concluded that the opposite currents will increase the liquefaction depth up to 30% of that without currents.


Author(s):  
Надежда Петровна Скибина

Проведено численное исследование нестационарного турбулентного сверхзвукового течения в камере сгорания прямоточного воздушно-реактивного двигателя. Описана методика экспериментального измерения температуры на стенке осесимметричного канала в камере сгорания двигателя. Математическое моделирование обтекания исследуемой модели двигателя проводилось для скоростей набегающего потока M = 5 ... 7. Начальные и граничные условия задачи соответствовали реальному аэродинамическому эксперименту. Проанализированы результаты численного расчета. Рассмотрено изменение распределения температуры вдоль стенки канала с течением времени. Проведена оценка согласованности полученных экспериментальных данных с результатами математического моделирования. Purpose. The aim of this study is a numerical simulation of unsteady supersonic gas flow in a working path of ramjet engine under conditions identical to aerodynamic tests. Free stream velocity corresponding to Mach numbers M=5 ... 7 are considered. Methodology. Presented study addresses the methods of physical and numerical simulation. The probing device for thermometric that allows to recording the temperature values along the wall of internal duct was proposed. To describe the motion of a viscous heat-conducting gas the unsteady Reynolds averaged Navier - Stokes equations are considered. The flow turbulence is accounted by the modified SST model. The problem was solved in ANSYS Fluent using finite-volume method. The initial and boundary conditions for unsteady calculation are set according to conditions of real aerodynamic tests. The coupled heat transfer for supersonic flow and elements of ramjet engine model are realized by setting of thermophysical properties of materials. The reliability testing of numerical simulation has been made to compare the results of calculations and the data of thermometric experimental tests. Findings. Numerical simulation of aerodynamic tests for ramjet engine was carried out. The agreement between the results of numerical calculations and experimental measurements for the velocity in the channel under consideration was obtained; the error was shown to be 2%. The temperature values were obtained in the area of contact of the supersonic flow with the surface of the measuring device for the external incident flow velocities for Mach numbers M = 5 ... 7. The process of heating the material in the channel that simulated the section of the engine combustion chamber was analyzed. The temperature distribution was studied depending on the position of the material layer under consideration relative to the contact zone with the flow. Value. In the course of the work, the fields of flow around the model of a ramjet engine were obtained, including the region of supersonic flow in the inner part of axisymmetric channel. The analysis of the temperature fields showed that to improve the quality of the results, it is necessary to take into account the depth of the calorimetric sensor. The obtained results will be used to estimate the time of interaction of the supersonic flow with the fuel surface required to reach the combustion temperature.


Author(s):  
Margarita Baeva ◽  
Tao Zhu ◽  
Thorben Kewitz ◽  
Holger Testrich ◽  
Rüdiger Foest

AbstractA two-dimensional and stationary magnetohydrodynamic model of a plasma spray torch operated with argon is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier–Stokes equations for a laminar and compressible flow are solved in terms of low and high Mach number numerical approaches. The results show that the Mach number can reach values close to one. Simulations are performed for electric currents of 600 A and 800 A, and gas flow rates of 40, 60, and 80 NLPM. The plasma parameters obtained by the two approaches differ, and the differences become more pronounced for higher currents and gas flow rates. The arc voltage, the electric power, and the thermal efficiency from both the low and high Mach number models of the plasma agree well with experimental findings for a current of 600 A and a flow rate of 40 NLPM. For higher currents and gas flow rates, the results of the low and high Mach number models gradually differ and underline the greater appropriateness of the high Mach number model.


Author(s):  
Alexander M. Molchanov ◽  
Anna A. Arsentyeva

An implicit fully coupled numerical method for modeling of chemically reacting flows is presented. Favre averaged Navier-Stokes equations of multi-component gas mixture with nonequilibrium chemical reactions using Arrhenius chemistry are applied. A special method of splitting convective fluxes is introduced. This method allows for using spatially second-order approximation in the main flow region and of first-order approximation in regions with discontinuities. To consider the effects of high-speed compressibility on turbulence the author suggests a correction for the model, which is linearly dependent on Mach turbulent number. For the validation of the code the described numerical procedures are applied to a series of flow and heat and mass transfer problems. These include supersonic combustion of hydrogen in a vitiated air, chemically reacting flow through fluid rocket nozzle, afterburning of fluid and solid rocket plumes, fluid dynamics and convective heat transfer in convergent-divergent nozzle. Comparison of the simulation with available experimental data showed a good agreement for the above problems.


2013 ◽  
Vol 48 (2) ◽  
pp. 251-259 ◽  
Author(s):  
E. N. Vasil’ev ◽  
D. A. Nesterov

Sign in / Sign up

Export Citation Format

Share Document