scholarly journals Perimeter Entropy and its Application to Climate Change

2020 ◽  
Vol 15 ◽  

Periphery phenomenon and its theory are introduced briefly; herein perimeter set is defined; and perimeter entropy is presented mathematically. By using precipitation and evaporation data over the middle and lower reaches of the Yangtze River, the perimeter entropy was computed. Analysis points out that with perimeter entropy study one can project climate change in advance

2020 ◽  
Author(s):  
Lulu Liu ◽  
Shaohong Wu ◽  
Jiangbo Gao

<p>Risk of climate-related impacts results from the interaction of climate-related hazards (including hazardous events and trends) with the vulnerability and exposure of human and natural systems. Despite the commitment of the Paris Agreement, the integrate research on climate change risk combining risk‐causing factors and risk‐bearing bodies, the regional differences in climate impacts are still missing. In this paper we provide a quantitative assessment of hazards and socioeconomic risks of extreme events, risks of risk‐bearing bodies in China under global warming of 1.5 and 2.0°C based on future climate scenarios, and quantitative evaluation theory for climate change risk. For severe heat waves, hazards might significantly intensify. Affected population under 2.0°C warming might increase by more than 60% compared to that of 1.5°C. Hazards of severe droughts and floods might strengthen under Representative Concentration Pathway 8.5 scenario. Economic losses might double between warming levels of 1.5 and 2.0°C, and the population affected by severe floods might continuously increase. Under the integrate effects of multiple disasters, the regions with high population and economic risks would be concentrated in eastern China. The scope would gradually expand to the west with socioeconomic development and intensification of extreme events. High ecological risks might be concentrated in the southern regions of the Yangtze River Basin, while the ecological risk in northern China would expand. High agriculture yield risks might be distributed mainly in south of the North China Plain, the Sichuan Basin, south of the Yangtze River, and west of Northwest China, and the risk levels might continuously increase.</p>


2013 ◽  
Vol 23 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Lin Li ◽  
Hongyan Shen ◽  
Sheng Dai ◽  
Hongmei Li ◽  
Jianshe Xiao

2012 ◽  
Vol 6 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Yansheng Gu ◽  
Hanlin Wang ◽  
Xianyu Huang ◽  
Hongxia Peng ◽  
Junhua Huang

Sign in / Sign up

Export Citation Format

Share Document