A Numerical Study of Correlation Between Recirculation Length and Shedding Frequency in Vortex Shedding Phenomena

2021 ◽  
Vol 16 ◽  
pp. 48-62
Author(s):  
Carlo Cravero ◽  
Nicola Marogna ◽  
Davide Marsano

The purpose of this paper is to characterize and to estimate the recirculating length behind an aerodynamic profile in ground effect with Gurney Flap. The flow characterization at high Reynolds numbers was performed by means of numerical analysis. A correlation between the size of the recirculation length and the frequency of vortex shedding was studied. The vortex shedding has a characteristic frequency, which, in this work, is correlated to the size of a recirculation length defined by the authors. The numerical investigation methodology applied to the profile with Gurney Flap, was previously developed on the well-documented test case of the flow around a cylinder at high Reynolds. The case was chosen to investigate and to validate the numerical approach with experimental data.

1991 ◽  
Vol 233 ◽  
pp. 265-298 ◽  
Author(s):  
Chien-Cheng Chang ◽  
Ruey-Ling Chern

A numerical study is made of the flow past an impulsively started rotating and translating circular cylinder using a hybrid vortex method. The Reynolds number (Re) ranges from 103 to 106 while the (counter-rotating) rotating-to-translating speed ratio (α) is increased from 0 to 2. It is found that three basic patterns of vortex shedding can be identified according to the behaviour of the stagnation points associated with the first upper and the first lower vortices. Depending on the parameters Re and α, the rotation may favour the shedding of the first upper vortex, or the first lower vortex (typically at high Reynolds numbers). In a transition region, strong competition for shedding exists between the first two vortices in the form of double transposition of stagnation (closure) points associated with the two vortices. Time variations of lift coefficients characterize different shedding patterns; the cylinder may first experience a substantial maximal downward lift when the first shedding vortex is from the upper wake, or a maximal upward lift otherwise.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 838 ◽  
Author(s):  
Jan Eggers ◽  
Eckart Lange ◽  
Stephan Kabelac

Recently, several publications gave attention to nanofluid based solar absorber systems in which the solar radiation energy is directly absorbed in the volume of the fluid. This idea could provide advantages over conventionally used surface absorbers regarding the optical and thermal efficiency. For the evaluation of this concept, a numerical approach is introduced and validated in this contribution. The results show that the optical efficiency of a volumetric absorber strongly depends on the scattering behavior of the nanofluid and can reach competitive values only if the particle size distribution is narrow and small. If this is achieved, the surface temperature and therefore the heat loss can be lowered significantly. Furthermore, the surface absorber requires very high Reynolds numbers to transfer the absorbed energy into the working fluid and avoid overheating of the absorber tube. This demand of pumping power can be reduced significantly using the concept of volumetric absorption.


2019 ◽  
Vol 105 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Yuejun Shi ◽  
Seongkyu Lee

This paper presents a new idea of reducing airfoil trailing edge noise using a small bump in the turbulent boundary layer. First, we develop and validate a new computational approach to predict airfoil trailing edge noise using steady RANS CFD, an empirical wall pressure spectrum model, and Howe's diff raction theory. This numerical approach enables fast and accurate predictions of trailing edge noise, which is used to study the noise reduction from the bump for various airfoil geometries and flow conditions at high Reynolds numbers. Three types of bumps, the suction-side bump, pressure-side bump, and both-side bumps, are studied. The results show that all types of bumps are able to reduce far-field noise up to 10 dB compared to clean airfoils, but their impacts are diff erent in terms of the eff ective frequency range. Also, bumps with four diff erent heights are compared with each other to investigate the eff ect of the height of bumps on noise reduction. It is demonstrated that a bump causes velocity deficit within the boundary layer near the wall. This velocity deficit results in reduced turbulence kinetic energy near the wall, which is responsible for trailing edge noise reduction. Overall, this paper demonstrates the potential of a boundary-layer bump in trailing edge noise reduction and sheds light on the physical mechanism of noise reduction with boundary-layer bumps.


Author(s):  
Chris R. Morton ◽  
Serhiy Yarusevych

The current study investigates flow past a step cylinder for ReD = 1050 and D/d = 2 using both experimental and numerical methods. The focus of the study is on the vortex shedding and vortex interactions occurring in the step cylinder wake. Flow visualization with hydrogen bubble technique and planar Laser Induced Fluorescence has shown that three distinct spanwise vortex cells form: a single vortex shedding cell in the wake of the small cylinder and two vortex shedding cells in the wake of the large cylinder. Vortex connections form between the spanwise vortices in these cells downstream of the step, and vortex dislocations occur at cell boundaries. Complementary to the experimental tests, an LES-RANS hybrid numerical simulation is used to model the flow development. A comparison of the experimental and numerical results indicates that the numerical approach adequately models vortex dynamics in the wake of a step cylinder and, thus, may be used to analyze time dependent, three-dimensional flow topology which is difficult to characterize quantitatively using experimental methods.


Author(s):  
Jean-Franc¸ois Sigrist ◽  
Cyrille Allery ◽  
Claudine Beghein

The present paper is the sequel of a previously published study which is concerned with the numerical simulation of vortex-induced-vibration (VIV) on an elastically supported rigid circular cylinder in a fluid cross-flow (A. Placzek, J.F. Sigrist, A. Hamdouni; Numerical Simulation of Vortex Shedding Past a Circular Cylinder at Low Reynolds Number with Finite Volume Technique. Part I: Forced Oscillations, Part II: Flow Induced Vibrations; Pressure Vessel and Piping, San Antonio, 22–26 July 2007). Such a problem has been thoroughly studied over the past years, both from the experimental and numerical points of view, because of its theoretical and practical interest in the understanding on flow-induced vibration problems. In this context, the present paper aims at exposing a numerical study based on a fully coupled fluid-structure simulation. The numerical technique is based on a finite volume discretisation of the fluid flow equations together with i) a re-meshing algorithm to account for the cylinder motion ii) a projection subroutine to compute the forces induced by the fluid on the cylinder and iii) a coupling procedure to describe the energy exchanges between the fluid flow and solid motion. The study is restricted to moderate Reynolds numbers (Re∼2.000–10.000) and is performed with an industrial CFD code. Numerical results are compared with existing literature on the subject, both in terms of cylinder amplitude motion and fluid vortex shedding modes. Ongoing numerical studies with different numerical techniques, such as ROM (Reduced Order Models)-based methods, will complete the approach and will be published in next PVP conference. These numerical simulations are proposed for code validation purposes prior to industrial applications in tube bundle configuration.


1991 ◽  
Vol 233 ◽  
pp. 243-263 ◽  
Author(s):  
Chien-Cheng Chang ◽  
Ruey-Ling Chern

Impulsively started flow around a circular cylinder at various Reynolds numbers is studied by a deterministic hybrid vortex method. The key feature of the method consists in solving the viscous vorticity equation by interlacing a finite-difference method for diffusion and a vortex-in-cell method for convection. The vorticity is updated along the surface of the cylinder to satisfy the no-slip condition. The present method is basically different from previous applications of vortex methods, which are primarily in the context of random vortex algorithms. The Reynolds numbers of the flows under investigation range from 300 to 106. Numerical results are compared with analytical solutions at small times, and compared with finite-difference solutions and flow visualization results at relatively long times. Satisfactory agreement is found in the evolutions of the separation angles, wake lengths, surface pressure and drag coefficients, streamline patterns, and some velocities on the axis of symmetry behind the circular cylinder. The present hybrid vortex method is highly stable and suffers from little numerical diffusivity, yielding convincing numerical results for unsteady vortical flows at moderately high Reynolds numbers.


1970 ◽  
Vol 41 (2) ◽  
pp. 453-480 ◽  
Author(s):  
James W. Deardorff

The three-dimensional, primitive equations of motion have been integrated numerically in time for the case of turbulent, plane Poiseuille flow at very large Reynolds numbers. A total of 6720 uniform grid intervals were used, with sub-grid scale effects simulated with eddy coefficients proportional to the local velocity deformation. The agreement of calculated statistics against those measured by Laufer ranges from good to marginal. The eddy shapes are examined, and only theu-component, longitudinal eddies are found to be elongated in the downstream direction. However, the lateralveddies have distinct downstream tilts. The turbulence energy balance is examined, including the separate effects of vertical diffusion of pressure and local kinetic energy.It is concluded that the numerical approach to the problem of turbulence at large Reynolds numbers is already profitable, with increased accuracy to be expected with modest increase of numerical resolution.


Sign in / Sign up

Export Citation Format

Share Document