scholarly journals The Thyristor Switched Parallel Capacitors (TSPC) Converter for Power Factor Correction in Wind Power Systems

2021 ◽  
Vol 16 ◽  
pp. 149-156
Author(s):  
Dimitrios Kalpaktsoglou ◽  
Anastasios Tsiakalos ◽  
Μanos Roumeliotis

This paper presents a novel power factor correction circuit suitable for low-speed electric generators usually used in direct drive wind turbines. The Thyristor Switched Parallel Capacitors (TSPC) circuit belongs to the Controlled Series Capacitor (CSC) circuits. Those circuits have been used in power transmission lines to correct the power factor and improve the performance of the electrical system. Such a circuit can be used in wind power systems to improve and maximize the efficiency of a wind turbine. A typical direct-drive wind power system employs variable speed electric generators, but the downside is that systems like that suffer from high and variable inductive reactance. In order to correct the power factor and to improve the efficiency of the system, the inductive reactance of the generator must become equal in value to the capacitive reactance. A TSPC circuit uses a set of capacitors, connected in series with anti-parallel thyristors. In every cycle, a controller triggers the appropriate thyristors, allowing the current to pass from the capacitor which then provides the system with the capacitive reactance that matches the generator’s inductor reactance. Therefore, the TSPC circuit is able to counteract for any reactive losses and improve the power factor, as well as, the efficiency. This paper introduces this novel power factor correction circuit that employs capacitors in parallel configuration. This circuit was simulated in PSPICE and was implemented and tested in the lab. Based on the simulation and implementation results, we discuss the benefits as well as the drawbacks of the proposed circuit

2021 ◽  
Vol 15 ◽  
Author(s):  
D. Kalpaktsoglou ◽  
A. Tsiakalos ◽  
S. Pouros ◽  
Μ. Roumeliotis

This paper compares by simulation the Thyristor Switched Series Capacitors (TSSC) Circuit with the Thyristor Switched Parallel Capacitors (TSPC) Circuit for wind turbines. The well-known TSSC circuit belongs to the Controlled Series Capacitor (CSC) circuits that have been used in power transmission lines in order to correct the power factor and improve the performance of the electrical system. Such a circuit can be used in wind power systems to improve and maximize the efficiency of a wind turbine. A typical direct-drive wind power system employs variable speed electric generators, but the downside is that systems like that suffer from high inductive reactance. A TSSC circuit, therefore, is able to counteract for any reactive losses, and improve the power factor as well as the efficiency. The main issue with the TSSC circuit is the use of a high number of capacitors that must be connected in series, which can increase the cost and the maintenance of the controller. This paper introduces a novel circuit with different control technique than the TSSC that employs capacitors in parallel configuration. The novel TSPC circuit was simulated in PSPICE and the benefits as well as the drawbacks are described


2014 ◽  
Vol 1070-1072 ◽  
pp. 209-215
Author(s):  
Mei Zhang ◽  
Hai Qin Xue ◽  
Shui Liang Zhou

The exiting of wind turbines will cause the adverse effect on the power grid and its assembling unit in network voltage drops. So, direct-drive wind power generation system should meet the requirement of the certain ability of low voltage. This paper introduces the influence of wind power system with different structure by voltage drop as well as the disadvantage and advantage on LVRT. The relate regulations based on LVRT are analyzed. The existing LVRT technologies of direct-drive wind power systems are briefly presented. The characteristics of each scheme from the different LVRT technology are analyzed. Moreover, further study of LVRT for PMSG is pointed out.


2013 ◽  
Vol 415 ◽  
pp. 236-240
Author(s):  
Chun Xue Wen ◽  
Liang Wang

Abstract: The direct-drive PMSG wind power has been widely used in small and medium-sized wind power. The master control system is core of the control system. In the Small wind power systems, the control system requires both stable and reliable operation, but also to minimize power consumption and cost. With the study on the existing technology of wind power main control system and on the basis of the existing science and technology accumulation, this paper proposed research program based on ARM and Linux embedded wind generation master system.The master control system developed in this paper has the following advatages:more automated,more accurate, simple and direct, low cost, low power consumption, easy to maintain, make the work more stability.


2013 ◽  
Vol 756-759 ◽  
pp. 4166-4170
Author(s):  
Xiao Ming Wang ◽  
Wan Ci Liu ◽  
Wen Juan Xiao

Based on working Principle of the direct-drive wind power systems grid-connected inverter was research, the mathematical model for inverter in Three-phase rotating coordinate was established and analyzed. A double-loop control strategy that based on feed forward decoupling were introduced, Meanwhile, combining the implementation effective control of the AC-side output current by the Space Vector Pulse Width Modulation method (SVPWM), it could generate sine wave current that had the same frequency and the same phase with network voltage. To a great degree, reduced harmonic pollution in power system, moreover, improved the Grid-connected wind power systems efficiency and reliability.


Author(s):  
Shenghu Li

The induction generators (IGs) are basic to wind energy conversion. They produce the active power and consume the reactive power, with the voltage characteristics fragile compared with that of the synchronous generators and doubly-fed IGs. In the stressed system states, they may intensify var imbalance, yielding undesirable operation of zone 3 impedance relays.In this paper, the operation characteristics of the zone 3 relays in the wind power systems is studied. With the theoretical and load flow analysis, it is proved that the equivalent impedance of the IGs lies in the 2nd quadrature, possibly seen as the backward faults by the mho relays, i.e. the apparent impedance enters into the protection region from the left side. The undesirable operation may be caused by more wind power, larger load, less var compensation, and larger torque angle.


Sign in / Sign up

Export Citation Format

Share Document