Microstructure and Mechanical Properties of an AA1070 Wire Severely Deformed by Drawing Process

2020 ◽  
Vol 30 (6) ◽  
pp. 308-314
Author(s):  
Dae-Han Jeong ◽  
Seong-Hee Lee
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yilong Han ◽  
Songbai Xue ◽  
Renli Fu ◽  
Lihao Lin ◽  
Zhongqiang Lin ◽  
...  

This work focused on the influence of hydrogen content on the microstructure and mechanical properties of ER5183 Al-Mg-Mn alloy wires for aluminum alloy welding. The hydrogen content of the ER5183 wires was measured, the macroscopic and microscopic morphologies of fractures were observed as well as the microstructure of the wires, and the tensile strength of the wires was also tested and investigated. The experimental results demonstrated three typical irregular macroscopic fractures of the wires appeared during the drawing process when the hydrogen content exceeded 0.23 μg/g. In the meantime, the aggregated pores were observed in the microstructure of the ϕ5.2 mm wire with the hydrogen content of 0.38 μg/g. Such defects may become the origin of cracks in subsequent processing and tensile tests. Moreover, higher hydrogen content in the ϕ5.2 mm welding wire will bring obvious changes in the fracture surface, which are internal cracks and micropores replacing the original uniform and compact dimples. With the higher hydrogen content, the tensile strength and plastic strain rate of ϕ1.2 mm wires would decrease. At the same time, unstable crack propagation would occur during the process of plastic deformation, leading to fracture. Considering the mechanical properties and microstructure, the hydrogen content of the ER5183 wires should be controlled below 0.23 μg/g.


2013 ◽  
Vol 745-746 ◽  
pp. 163-167 ◽  
Author(s):  
Xiao Yan Xu ◽  
Ya Feng Lu ◽  
Ming Liang ◽  
Peng Fei Wang ◽  
Xiao Bo Ma ◽  
...  

The annealing effects on the microstructure of Cu-Nb microcomposites fabricated by bundling and drawing process have been studied. During annealing at temperature as high as 800, the intensity of (110) diffraction peak of Nb became sharper and higher. The significant cylinderization and coarsening phenomenons of the niobium filaments were observed. The influence of microstructural changes on the hardness and the tensile strengths of Cu-Nb wires were discussed.


Sign in / Sign up

Export Citation Format

Share Document