BIOCONVECTION IN CASSON FLUID FLOW WITH GYROTACTIC MICROORGANISMS AND HEAT TRANSFER OVER A LINEAR STRETCHING SHEET IN PRESENCE OF MAGNETIC FIELD

2020 ◽  
Vol 10 (1) ◽  
pp. 155-169
Author(s):  
G. C. Sankad ◽  
I. Maharudrapppa ◽  
M. Y. Dhange
2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


2020 ◽  
Vol 9 (3) ◽  
pp. 804
Author(s):  
Motahar Reza ◽  
Amalendu Rana ◽  
Raghunath Patra

A theoretical investigation is done to analyze the heat transfer features of non-Newtonian Casson fluid in a porous microtube with electro kinetic effects associated with the applied magnetic field. The exact analytical solutions the velocity and temperature profiles of non-Newtonian Casson fluid in porous micro-tube related to combining effects of electromagnetohydrodynamics forces and electrokinetic forces have been obtained using a variation of parameter. Temperature and flow distribution characteristics of Casson fluid flow are controlled by the obtruded pressure-gradients, applied a magnetic field and electro-kinetic forces. The exciting features of the electromagnetohydrodynamics flow along with the features of the heat flow rate are examined by variation in the non-dimensional physical arguments on velocity and temperature functions. The effect of the Casson parameter on the velocity and temperature profiles has been investigated analyzed. The fluid flow rate and the heat transfer rate of Casson fluid within porous micro-tube is controlled by the strength applied electric and magnetic field. 


2019 ◽  
Vol 30 (6) ◽  
pp. 3463-3480 ◽  
Author(s):  
Jafar Hasnain ◽  
Zaheer Abbas ◽  
Mariam Sheikh ◽  
Shaban Aly

Purpose This study aims to present an analysis on heat transfer attributes of fluid-particle interaction over a permeable elastic sheet. The fluid streaming on the sheet is Casson fluid (CF) with uniform distribution of dust particles. Design/methodology/approach The basic steady equations of the CF and dust phases are in the form of partial differential equations (PDEs) which are remodeled into ordinary ones with the aid of similarity transformations. In addition to analytical solution, numerical solution is obtained for the reduced coupled non-linear ordinary differential equations (ODEs) to validate the results. Findings The solution seems to be influenced by significant physical parameters such as CF parameter, magnetic parameter, suction parameter, fluid particle interaction parameter, Prandtl number, Eckert number and number density. The impact of these parameters on flow field and temperature for both fluid and dust phases is presented in the form of graphs and discussed in detail. The effect on skin friction coefficient and heat transfer rate is also presented in tabular form. It has been observed that an increase in the CF parameter curtails the fluid velocity as well as the particle velocity however enhances the heat transfer rate at the wall. Furthermore, comparison of the numerical and analytical solution is also made and found to be in excellent agreement. Originality/value Although the analysis of dusty fluid flow has been widely examined, however, the present study obtained both analytical and numerical results of power law temperature distribution in dusty Casson fluid under the influence of magnetic field which are new and original for such type of flow.


2018 ◽  
Vol 49 (12) ◽  
pp. 1185-1198 ◽  
Author(s):  
Abid Hussanan ◽  
Mohd Zuki Salleh ◽  
Hamzeh Taha Alkasasbeh ◽  
Ilyas Khan

Sign in / Sign up

Export Citation Format

Share Document