Influence of external electromagnetic field on parameters and defects of crystal lattice of metal of welded joints during underwater welding

2021 ◽  
Vol 2021 (1) ◽  
pp. 23-28
Author(s):  
S.Yu. Maksymov ◽  
◽  
О.M. Berdnikova ◽  
O.O. Prilipko ◽  
T.O. Alekseenko ◽  
...  
2021 ◽  
Vol 410 ◽  
pp. 342-347
Author(s):  
Sergey Yu. Maksimov ◽  
Olena M. Berdnikova ◽  
Olena A. Prilipko

Analysis of structural factor influence on local internal stresses and zones of deformation localization in upper and lower bainite structures in welded joints of low-alloy steel at wet underwater welding was performed. It is established that when welding joints under the water and applying an external electromagnetic field in the metal of the heat-affected zone (HAZ), a finer-grained substructure is formed with a general decrease in the dislocations density and with their uniform distribution. Estimates of the local internal stresses level considering the dislocation density distribution in the structural zones of their localization show that their maximum level is formed in the metal of the HAZ overheating region at welding without the external electromagnetic field along the upper bainite laths boundaries. The upper bainite structure is characterized by forming localized deformation zones, where the most significant dislocation density gradients are observed. This can lower the crack resistance of welded joints. Low values of local internal stresses are characteristic of welded joints obtained in the modes applying an external electromagnetic field. This is facilitated by the overall decrease in the dislocation density and their uniform distribution in the lower bainite structural components, which provides high crack resistance of welded joints.


Author(s):  
Yu. Vasetskiy ◽  
◽  
I. Kondratenko ◽  
I. Mazurenko ◽  
М. Pashchyn ◽  
...  

1993 ◽  
Vol 08 (05) ◽  
pp. 463-468 ◽  
Author(s):  
D.M. GITMAN ◽  
A.V. SAA

A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic momentum is given. The action is written in reparametrization and supergauge invariant form. The Dirac quantization, based on the Hamiltonian analyzes of the model, leads to the Dirac-Pauli equation for a particle with an anomalous magnetic momentum in an external electromagnetic field. Due to the structure of first class constraints in that case, the Dirac quantization demands for consistency to take into account an operator’s ordering problem.


2017 ◽  
Author(s):  
Arturo G. Bautista ◽  
Juan A. Aguado ◽  
Yong X. Gan

In this work, a sodium-cobalt oxide (NaxCo2O4) ceramic composite nanofiber was manufactured through electrospinning. The response of the fiber to external electromagnetic field was characterized to observe the heat generation in the fiber. In addition, we also measured the current passing through the fiber under the polarization of DC potential. It is found that the fiber has intensive heating behavior when it is exposed to the electromagnetic field. The temperature increases more than 5 degrees in Celsius scale only after 5 s exposure. The current – potential curve of the fiber reveals its dielectric behavior. It is concluded that this ceramic fiber has the potential to be used for hyperthermia treatment in biomedical engineering or for energy conversions.


Sign in / Sign up

Export Citation Format

Share Document