scholarly journals Coexistence of hyperlipidemia and acute cerebral ischemia/reperfusion induces severe liver damage in a rat model

2012 ◽  
Vol 18 (35) ◽  
pp. 4934 ◽  
Author(s):  
Wei-Hong Gong
2011 ◽  
Vol 26 (suppl 1) ◽  
pp. 14-20 ◽  
Author(s):  
Vilma Leite de Sousa Pires ◽  
José Reniclebson Feitosa de Souza ◽  
Sergio Botelho Guimarães ◽  
Antonio Ribeiro da Silva Filho ◽  
José Huygens Parente Garcia ◽  
...  

PURPOSE: To investigate the effect of L-alanyl-L-glutamine (L-Ala-Gln) preconditioning in an acute cerebral ischemia/reperfusion (I/R) model in gerbils. METHODS: Thirty-six Mongolian gerbils (Meriones unguiculatus), (60-100g), were randomized in 2 groups (n=18) and preconditioned with saline 2.0 ml (Group-S) or 0.75g/Kg of L-Ala-Gln, (Group-G) administered into the femoral vein 30 minutes prior to I/R. Each group was divided into three subgroups (n=6). Anesthetized animals (urethane, 1.5g/Kg, i.p.) were submitted to bilateral occlusion of common carotid arteries during 15 minutes. Samples (brain tissue and arterial blood) were collected at the end of ischemia (T0) and after 30 (T30) and 60 minutes (T60) for glucose, lactate, myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), glutathione (GSH) assays and histopathological evaluation. RESULTS: Glucose and lactate levels were not different in studied groups. However glycemia increased significantly in saline groups at the end of the reperfusion period. TBARS levels were significantly different, comparing treated (Group-G) and control group after 30 minutes of reperfusion (p<0.05) in cerebral tissue. Pretreatment with L-Ala-Gln promoted a significant increase in cerebral GSH contents in Group-G at T30 (p<0.001) time-point compared with Group-S. At T30 and T60, increased levels of GSH occurred in both time-points. There were no group differences regarding MPO levels. Pyknosis, presence of red neurons and intracellular edema were significantly smaller in Group-G. CONCLUSION: Preconditioning with L-Ala-Gln in gerbils submitted to cerebral ischemia/reperfusion reduces oxidative stress and degeneration of the nucleus (pyknosis) and cell death (red neurons) in the cerebral tissue.


2019 ◽  
Vol 51 (8) ◽  
pp. 767-777 ◽  
Author(s):  
Jing Wang ◽  
Ruohan Sun ◽  
Zhenzhu Li ◽  
Yujun Pan

Abstract Ischemic stroke has become one of the leading causes of deaths and disabilities all over the world. In this study, we investigated the therapeutic effects of combined bone marrow stromal cells (BMSCs) and oxiracetam treatments on acute cerebral ischemia/reperfusion (I/R) injury. A rat model of middle cerebral artery occlusion (MCAO) followed by complete reperfusion, as well as a cortex neuron oxygen-glucose deprivation (OGD) model was established. When compared with BMSCs or oxiracetam monotherapy, combination therapy significantly improved functional restoration with decreased infarct volume in observed ischemic brain. We propose that it may occur through the transient receptor potential canonical (TRPC)6 neuron survival pathway. The increased expression of TRPC6 along with the reduction of neuronal cell death in the OGD cortex neurons and combination therapy group indicated that the TRPC6 neuron survival pathway plays an important role in the combined BMSCs and oxiracetam treatments. We further tested the activity of the calpain proteolytic system, and the results suggested that oxiracetam could protect the integrity of TRPC6 neuron survival pathway by inhibiting TRPC6 degradation. The protein levels of phospho-cAMP response element binding protein (p-CREB) were tested. It was found that BMSCs play a role in the activation of the TRPC6 pathway. Our study suggests that the TRPC6 neuron survival pathway plays a significant role in the protective effect of combined BMSCs and oxiracetam treatments on acute cerebral I/R injury. Combined therapy could inhibit the abnormal degradation of TRPC6 via decreasing the activity of calpain and increasing the activation of TRPC6 neuron survival pathway.


Sign in / Sign up

Export Citation Format

Share Document