scholarly journals DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development

2003 ◽  
Vol 9 (6) ◽  
pp. 1165 ◽  
Author(s):  
Feng Zhu
2006 ◽  
Vol 26 (23) ◽  
pp. 8880-8891 ◽  
Author(s):  
Linda Panić ◽  
Sanda Tamarut ◽  
Melanie Sticker-Jantscheff ◽  
Martina Barkić ◽  
Davor Solter ◽  
...  

ABSTRACT Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5847
Author(s):  
Satheesh Gujarathi ◽  
Maroof Khan Zafar ◽  
Xingui Liu ◽  
Robert L. Eoff ◽  
Guangrong Zheng

Garcinoic acid has been identified as an inhibitor of DNA polymerase β (pol β). However, no structure-activity relationship (SAR) studies of garcinoic acid as a pol β inhibitor have been conducted, in part due to the lack of an efficient synthetic method for this natural product and its analogs. We developed an efficient semi-synthetic method for garcinoic acid and its analogs by starting from natural product δ-tocotrienol. Our preliminary SAR studies provided a valuable insight into future discovery of garcinoic acid-based pol β inhibitors.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1138 ◽  
Author(s):  
Evgenia V. Khokhlova ◽  
Zoia S. Fesenko ◽  
Julia V. Sopova ◽  
Elena I. Leonova

Cell repair machinery is responsible for protecting the genome from endogenous and exogenous effects that induce DNA damage. Mutations that occur in somatic cells lead to dysfunction in certain tissues or organs, while a violation of genomic integrity during the embryonic period often leads to death. A mammalian embryo’s ability to respond to damaged DNA and repair it, as well as its sensitivity to specific lesions, is still not well understood. In this review, we combine disparate data on repair processes in the early stages of preimplantation development in mammalian embryos.


2013 ◽  
Vol 30 (3) ◽  
pp. 86-94 ◽  
Author(s):  
Satoshi Tsukamoto ◽  
Atsushi Yamamoto

Author(s):  
Victor D. Varner ◽  
Dmitry A. Voronov ◽  
Larry A. Taber

Head fold morphogenesis constitutes the first discernible epithelial folding event in the embryonic development of the chick. It arises at Hamburger and Hamilton (HH) stage 6 (approximately 24 hours into a 21-day incubation period) and establishes the anterior extent of the embryo [1]. At this stage, the embryonic blastoderm is composed of three germ layers (endoderm, mesoderm, and ectoderm), which are organized into a flat layered sheet that overlies the fibrous vitelline membrane (VM). Within this blastodermal sheet, a crescent-shaped head fold develops just anterior to the elongating notochord, spanning across the embryonic midline at the rostral end of neural plate. At the crest of this fold, the bilateral precardiac plates fuse in a cranial to caudal direction and give rise to the primitive heart tube and foregut [2, 3]. An understanding of head fold morphogenesis may thus offer insight into how embryonic tissues are arranged to make ready for proper cardiac formation.


Sign in / Sign up

Export Citation Format

Share Document