Two Astrophyllite-Supergroup Minerals: Bulgakite, A New Mineral From the Darai-Pioz Alkaline Massif, Tajikistan and Revision of the Crystal Structure and Chemical Formula of Nalivkinite

2016 ◽  
Vol 54 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Elena Sokolova ◽  
Yassir A. Abdu ◽  
Vladimir Y. Karpenko
1990 ◽  
Vol 54 (376) ◽  
pp. 495-500 ◽  
Author(s):  
Jan T. Szymański ◽  
Andrew C. Roberts

AbstractThe crystal structure of the new mineral voggite, Na2Zr(PO4)(CO3)(OH).2H2O , from the Francon quarry, Montreal, Quebec, Canada, has been solved in order to determine the correct chemical formula, as conventional electron microprobe methods were found unreliable. The unit cell is monoclinic, I2/m, with a = 12.261(2), b = 6.561(1), c = 11.757(2)Å, β = 116.19(2)°. The structure consists of layers of edge-sharing Zr-O pentagonal bipyramids, separated by layers of Na-(O,H2O) octahedra. The carbonate ion acts as a bidentate ligand in the Zr-O polyhedron, the third oxygen atom being bonded to the Na atom. The phosphate group is bonded to three different Zr atoms and to a Na atom. The Zr-O bond lengths vary from 2.067 to 2.283 (mean 2.140Å), while Na-O are between 2.304 and 2.773, (σ = 0.006Å, mean 2.480Å). The carbonate and phosphate bonds are normal. It is inferred from the structure that the columns of octahedrally coordinated Na atoms can easily be broken apart when subjected to the heat generated by the electron microprobe beam, with the subsequent expulsion of water. This gives rise to ‘mobile’ Na atoms, which make quantitative electron microprobe analysis extremely difficult. The structure allows the ‘liberated’ Na atoms to move freely within planes parallel to .


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 702 ◽  
Author(s):  
Biagioni ◽  
Bindi ◽  
Mauro ◽  
Hålenius

The new mineral species scordariite, K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as pseudo-hexagonal tabular crystals, yellowish to brownish in color, up to 0.5 mm in size. Cleavage is perfect on {0001}. It is associated with giacovazzoite, krausite, gypsum, jarosite, alum-(K), and magnanelliite. Electron microprobe analyses give (wt %): SO3 47.31, Al2O3 0.66, Fe2O3 24.68, FeO 0.69, Na2O 0.52, K2O 17.36, H2Ocalc 15.06, total 106.28. The partitioning of Fe between Fe2+ and Fe3+ was based on Mössbauer spectroscopy. On the basis of 67 O atoms per formula unit, the empirical chemical formula is (K7.50Na0.34)Σ7.84(Fe3+6.29Al0.26Fe2+0.20)Σ6.75S12.02O50·17H2O. The ideal end-member formula can be written as K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11. Scordariite is trigonal, space group R-3, with (hexagonal setting) a = 9.7583(12), c = 53.687(7) Å, V = 4427.4(12) Å3, Z = 3. The main diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity]: 8.3, strong; 6.6, medium; 3.777, medium; 3.299, medium; 3.189, medium; 2.884, strong. The crystal structure of scordariite has been refined using X-ray single-crystal data to a final R1 = 0.057 on the basis of 1980 reflections with Fo > 4σ(Fo) and 165 refined parameters. It can be described as a layered structure formed by three kinds of layers. As with other metavoltine-related minerals, scordariite is characterized by the occurrence of the [Fe3+3O(SO4)6(H2O)3]5− heteropolyhedral cluster.


2017 ◽  
Vol 81 (6) ◽  
pp. 1533-1550 ◽  
Author(s):  
E. Sokolova ◽  
A. Genovese ◽  
A. Falqui ◽  
F.C. Hawthorne ◽  
F. Cámara

AbstractThe crystal structure and chemical formula of zvyaginite, ideally Na2ZnTiNb2(Si2O7)2O2(OH)2(H2O)4, a lamprophyllite-group mineral of the seidozerite supergroup from the type locality, Mt. Malyi Punkaruaiv, Lovozero alkaline massif, Kola Peninsula, Russia have been revised. The crystal structurewas refined with a new origin in space group C1, a = 10.769(2), b = 14.276(3), c = 12.101(2) Å, α = 105.45(3), β = 95.17(3), γ = 90.04(3)°, V = 1785.3(3.2) Å3, R1 = 9.23%. The electron-microprobe analysis gave the following empirical formula [calculated on 22 (O + F)]: (Na0.75Ca0.09K0.04□1.12)Σ2 (Na1.12Zn0.88Mn0.17Fe2+0.04□0.79)Σ3 (Nb1.68Ti1.25Al0.07)Σ3 (Si4.03O14)O2 [(OH)1.11F0.89]Σ2(H2O)4, Z = 4. Electron-diffraction patterns have prominent streaking along c* and HRTEM images show an intergrowth of crystalline zvyaginite with two distinct phases, both of which are partially amorphous. The crystal structure of zvyaginite is an array of TS (Titanium-Silicate) blocks connected via hydrogen bonds between H2O groups. The TS block consists of HOH sheets (H = heteropolyhedral, O = octahedral) parallel to (001). In the O sheet, the [6]MO(1,4,5) sites are occupied mainly by Ti, Zn and Na and the [6]MO(2,3) sites are occupied by Na at less than 50%. In the H sheet, the [6]MH(1,2) sites are occupied mainly by Nb and the [8]AP(1) and [8]AP(2) sites are occupied mainly by Na and □. The MH and AP polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula is Na□Nb2NaZn□Ti(Si2O7)2O2(OH)2(H2O)4. Zvyaginite is a Zn-bearing and Na-poor analogue of epistolite, ideally (Na□)Nb2Na3Ti(Si2O7)2O2(OH)2(H2O)4. Epistolite and zvyaginite are related by the following substitution in the O sheet of the TS-block: (Naþ 2 )epi↔Zn2+ zvy +□zvy. The doubling of the t1 and t2 translations of zvyaginite relative to those of epistolite is due to the order of Zn and Na along a (t1) and b (t2) in the O sheet of zvyaginite.


2009 ◽  
Vol 73 (3) ◽  
pp. 373-384 ◽  
Author(s):  
D. Wiedenmann ◽  
A. N. Zaitsev ◽  
S. N. Britvin ◽  
S. V. Krivovichev ◽  
J. Keller

AbstractAlumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), is a new mineral member of the melilite group from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, Tanzania. The mineral occurs as tabular phenocrysts and microphenocrysts in melilite-nephelinitic ashes and lapilli-tuffs. Alumoåkermanite is light brown in colour; it is transparent, with a vitreous lustre and the streak is white. Cleavages or partings are not observed. The mineral is brittle with an uneven fracture. The measured density is 2.96(2) g/cm3. The Mohs hardness is ~4.5–6. Alumoåkermanite is uniaxial (–) with ω = 1.635(1) and ε = 1.624–1.626(1). In a 30 mm thin section (+N), the mineral has a yellow to orange interference colour, straight extinction and positive elongation, and is nonpleochroic. The average chemical formula of the mineral derived from electron microprobe analyses is: (Ca1.48Na0.50Sr0.02 K0.01)(Si1.99Al0.01O7). Alumoåkermanite is tetragonal, space group P421m with a = 7.7661(4) Å, c = 5.0297(4) Å, V = 303.4(1) Å3 and Z = 2. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 3.712, (13), (111); 3.075, (25), (201); 2.859, (100), (211); 2.456, (32), (311); 1.757, (19), (312). Single-crystal structure refinement (R1 = 0.018) revealed structure topology typical of the melilite-group minerals, i.e. tetrahedral [(Al,Mg)(Si2O7)] sheets interleaved with layers of (CaNa) cations. The name reflects the chemical composition of the mineral.


2012 ◽  
Vol 50 (2) ◽  
pp. 523-529 ◽  
Author(s):  
A. A. Agakhanov ◽  
L. A. Pautov ◽  
V. Y. Karpenko ◽  
E. Sokolova ◽  
F. C. Hawthorne

2018 ◽  
Vol 82 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Marcelo B. Andrade ◽  
Hexiong Yang ◽  
Robert T. Downs ◽  
Gunnar Färber ◽  
Reynaldo R. Contreira Filho ◽  
...  

ABSTRACTA new mineral species, fluorlamprophyllite (IMA2013-102), ideally Na3(SrNa)Ti3(Si2O7)2O2F2, has been found in the Poços de Caldas alkaline massif, Morro do Serrote, Minas Gerais, Brazil. Alternatively, the idealized chemical formula could be written as (SrNa)[(Na3Ti)F2][Ti2(Si2O7)2O2], setting the large interlayer cations before the cations of the layer. Fluorlamprophyllite is the F-analogue of lamprophyllite. It is associated with aegirine, analcime, natrolite, nepheline and microcline. Fluorlamprophyllite crystals are brownish-orange and bladed. The mineral is transparent with a pale yellow streak and an adamantine lustre. It is brittle and has a Mohs hardness of ~3; cleavage is perfect on {100} and no parting was observed. The calculated density is 3.484 g/cm3. Optically, fluorlamprophyllite is biaxial (+), with α = 1.735(7), β = 1.749(7) and γ = 1.775(9) and 2Vmeas = 72(3)°. An electron microprobe analysis produced an average composition (wt.%) (9 points) of Na2O 10.63(30), K2O 0.47(3), SiO2 30.51(13), SrO 18.30(24), MgO 0.81(17), Al2O3 0.23(2), CaO 1.11(7), MnO 5.03(38), TiO2 27.41(87), Fe2O3 2.45(37), F 2.86(23), plus H2O 1.00 (added to bring the total close to 100%), –O = F –1.20, with the total = 98.61%. The elements Nb and Ba were sought, but contents were below microprobe detection limits. The resultant chemical formula was calculated on the basis of 18 (O + F) atoms per formula unit. The addition of 1.00 wt.% H2O brought [F+(OH)] = 2 pfu, yielding (Na2.63Sr1.35Mn0.54Ca0.15Mg0.15K0.08)Σ4.90(Ti2.63Fe0.24Al0.04)Σ2.91Si3.89O16[F1.15(OH)0.85]Σ2.00. The mineral is monoclinic, with space group C2/m and unit-cell parameters a = 19.255(2), b = 7.0715(7), c = 5.3807(6) Å, β = 96.794(2)° and V = 727.5(1) Å3. The structure is a layered silicate inasmuch as the O atoms are arranged in well-defined, though not necessarily close-packed layers.


2020 ◽  
Vol 9 ◽  
pp. 19-25
Author(s):  
R. K. Rastsvetaeva ◽  
◽  
N. V. Chukanov ◽  
Ch. Schäfer ◽  

Minerals of the eudialyte group from ultra-agpaitic associations are often characterized by high contents (up to the dominance) of sodium at the M2 site, which is populated with iron in eudialyte. The features of blocky isomorphism with the replacement of IVFe2+ by IVNa and VNa at the M2 micro-region are discussed. Using the methods of electron probe microanalysis, X-ray diffraction and IR spectroscopy, a potentially new mineral, M2Na-dominant analogue of eudialyte from the Ilimaussaq alkaline massif (Greenland), was investigated. Its crystal structure was refined to R = 5.6 % in the anisotropic approximation of atomic displacements using 1095 independent reflections with F > 3(F). The unit-cell parameters are: a = 14.208(1), c = 30.438(1) Å, V = 5321(1) Å3; the space group is R-3m. The idealized formula of the mineral is (Z = 3): (Na,H3O)15Ca6Zr3[Na2Fe][Si26O72](OH)2Cl∙2H2O.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 960
Author(s):  
Philippe Roth ◽  
Nicolas Meisser ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Fernando Cámara ◽  
...  

The new mineral species rüdlingerite, ideally Mn2+2V5+As5+O7·2H2O, occurs in the Fianel mine, in Val Ferrera, Grisons, Switzerland, a small Alpine metamorphic Mn deposit. It is associated with ansermetite and Fe oxyhydroxide in thin fractures in Triassic dolomitic marbles. Rüdlingerite was also found in specimens recovered from the dump of the Valletta mine, Canosio, Cuneo, Piedmont, Italy, where it occurs together with massive braccoite and several other As- and V-rich phases in richly mineralized veins crossing the quartz-hematite ore. The new mineral displays at both localities yellow to orange, flattened elongated prismatic, euhedral crystals measuring up to 300 μm in length. Electron-microprobe analysis of rüdlingerite from Fianel gave (in wt%): MnO 36.84, FeO 0.06, As2O5, 25.32, V2O5 28.05, SiO2 0.13, H2Ocalc 9.51, total 99.91. On the basis of 9 O anions per formula unit, the chemical formula of rüdlingerite is Mn1.97(V5+1.17 As0.83Si0.01)Σ2.01O7·2H2O. The main diffraction lines are [dobs in Å (Iobs) hkl]: 3.048 (100) 022, 5.34 (80) 120, 2.730 (60) 231, 2.206 (60) 16-1, 7.28 (50) 020, 2.344 (50) 250, 6.88 (40) 110, and 2.452 (40) 320. Study of the crystal structure showcases a monoclinic unit cell, space group P21/n, with a = 7.8289(2) Å, b = 14.5673(4) Å, c = 6.7011(2) Å, β = 93.773(2)°, V = 762.58(4) Å3, Z = 4. The crystal structure has been solved and refined to R1 = 0.041 on the basis of 3784 reflections with Fo > 4σ(F). It shows Mn2+ hosted in chains of octahedra that are subparallel to [-101] and bound together by pairs of tetrahedra hosted by V5+ and As5+, building up a framework. Additional linkage is provided by hydrogen-bonding through H2O coordinating Mn2+ at the octahedra. One tetrahedrally coordinated site is dominated by V5+, T(1)(V0.88As0.12), corresponding to an observed site scattering of 24.20 electrons per site (eps), whereas the second site is strongly dominated by As5+,T(2)(As0.74V0.26), with, accordingly, a higher observed site scattering of 30.40 eps. The new mineral has been approved by the IMA-CNMNC and named for Gottfried Rüdlinger (born 1919), a pioneer in the 1960–1980s, in the search and study of the small minerals from the Alpine manganese mineral deposits of Grisons.


2012 ◽  
Vol 76 (3) ◽  
pp. 551-566 ◽  
Author(s):  
L. Bindi ◽  
R. T. Downs ◽  
P. G. Spry ◽  
W. W. Pinch ◽  
S. Menchetti

AbstractThe crystal structure and chemical composition of two samples of fettelite from the type locality, including a portion of the holotype material, was investigated to verify if a previously proposed revision of the chemical formula was applicable, and to study the role of cation substitution for Hg that would suggest new members of the fettelite family. The crystal structure of fettelite from the type locality was found to be equivalent to that reported previously for the Chilean occurrence, and consists of an alternation of two kinds of layers along c: layer A with general composition [Ag6As2S7]2– and layer B with general composition [Ag10HgAs2S8]2+. In this structure, the Ag atoms occur in various coordination configurations, varying from quasi-linear to quasi-tetrahedral, the AsS3 groups form pyramids as are typically observed in sulfosalts, and Hg links two sulfur atoms in a linear coordination. The refined compositions for the crystals in this study, [Ag6As2S7][Ag10(Fe0.53Hg0.47)As2S8] (R100124) and [Ag6As2S7][Ag10(Hg0.79Cu0.21)As2S8] (R110042), clearly indicate that new mineral species related to fettelite are likely to be found in nature.


Sign in / Sign up

Export Citation Format

Share Document