Nano- and Micrometer-Sized PGM in Ni-Cu-Fe Sulfides from an Olivine Megacryst in the Udachnaya Pipe, Yakutia, Russia

2021 ◽  
Vol 59 (6) ◽  
pp. 1755-1773
Author(s):  
José María González-Jiménez ◽  
Irina Tretiakova ◽  
Marco Fiorentini ◽  
Vladimir Malkovets ◽  
Laure Martin ◽  
...  

ABSTRACT This paper focuses on a nanoscale study of nano- and micrometer-size Os-rich mineral particles hosted in a Ni-Fe-Cu sulfide globule found in an olivine megacryst from the Udachnaya pipe (Yakutia, Russia). These platinum-group element mineral particles and their host sulfide matrices were investigated using a combination of techniques, including field emission gun electron probe microanalyzer, field emission scanning electron microscopy, and focused ion beam and high-resolution transmission electron microscopy. The sulfide globule is of mantle origin, as it is hosted in primitive olivine (Fo90–93), very likely derived from the crystallization of Ni-Fe-Cu sulfide melt droplets segregated by liquid immiscibility from a basaltic melt in a volume of depleted subcontinental lithospheric mantle. Microscopic observations by means of field emission scanning electron microscopy and single-spot analysis and mapping by field emission gun electron probe microanalyzer reveal that the sulfide globule comprises a core of pyrrhotite with flame-like exsolutions (usually <10 μm thickness) of pentlandite, which is irregularly surrounded by a rim of granular pentlandite and chalcopyrite. Elemental mapping by energy dispersive spectroscopy (acquired using the high-resolution transmission electron microscopy) of the pyrrhotite (+ pentlandite) core reveals that pentlandite exsolution in pyrrhotite is still observable at the nanoscale as fringes of 100 to 500 nm thicknesses. The sulfide matrices of pyrrhotite, pentlandite, and chalcopyrite contain abundant nano- and micrometer-size platinum group element mineral particles. A careful inspection of eight of these platinum group element particles under focused ion beam and high-resolution transmission electron microscopy showed that they are crystalline erlichmanite (OsS2) with well-developed crystal faces that are distinctively oriented relative to their sulfide host matrices. We propose that the core of the Ni-Fe-Cu sulfide globule studied here was derived from a precursor monosulfide solid solution originally crystallized from a sulfide melt at >1100 °C, which later decomposed into pyrrhotite and the pentlandite flame-like exsolutions upon cooling at <600 °C. Once solidified, the solid monosulfide solid solution reacted with non-equilibrium Cu-and Ni-rich sulfide melt(s), giving rise to the granular pentlandite in equilibrium with chalcopyrite now forming the rim of the sulfide globule. Meanwhile, nano- to micron-sized crystals of erlichmanite crystallized directly from or slightly before monosulfide solid solution from the sulfide melt. Thus, Os, and to a lesser extent Ir and Ru, were physically partitioned by preferential uptake via early formation of nanoparticles at high temperature instead of low-temperature exsolution from solid Ni-Fe-Cu sulfides. The new data provided in this paper highlight the necessity of studying platinum group element mineral particles in Ni-Fe-Cu sulfides using analytical techniques that can image nanoscale textural features in order to better understand the mechanisms of platinum group element fractionation in magmatic systems. These processes may play a crucial role in controlling the background geochemical budgets for siderophile and chalcophile elements in a wide range of mantle-derived magmas.

2020 ◽  
Vol 115 (6) ◽  
pp. 1343-1361
Author(s):  
Valeriya D. Brovchenko ◽  
Sergey F. Sluzhenikin ◽  
Elena V. Kovalchuk ◽  
Sofia V. Kovrigina ◽  
Vera D. Abramova ◽  
...  

Abstract The deepest terminations of the Mount Rudnaya subvertical massive sulfide offshoots of the Norilsk 1 orebody are composed of exceptionally fine grained sulfides that are believed to be natural quenched sulfide solid solutions. Copper-rich intermediate solid solution (ISS) and Fe-rich monosulfide solid solution (MSS) form an equigranular and lamellar matrix hosting MSS- and ISS-dominant globules. The nonstoichiometric chemical compositions of the solid solutions plot within their high-temperature fields known from experiments. MSS contains 19 to 35 wt % Ni, 0.09 to 0.45 wt % Co, and up to 0.6 wt % Cu and is heterogeneously enriched in Rh (up to 32 ppm), Ir (up to 0.6 ppm), Pt (up to 65 ppm), and Pd (up to 168 ppm). ISS occurs as the lamellar intergrowths of the chalcopyrite (Ccpss) and cubanite (Cubss) solid solutions, which bear up to 4.74 wt % Ni and 0.2 wt % Co and are heterogeneously enriched in Zn, Ag, and In. The assemblage of platinum group minerals (PGMs) is hosted mostly in the ISS and is dominated by Pt-Fe alloys and minerals of the rustenburgite-atokite series, like the set of PGMs at the Norilsk 1 deposit. Similar Pt-Pd-Sn compounds in the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) spectra of profiles through MSS and ISS are interpreted to be trapped microinclusions. The pentlandite contains up to 0.13 wt % Pt, up to 4.62 wt % Pd, <0.53 wt % Co, and <0.4 wt % Cu according to electron microprobe analysis. LA-ICP-MS data and mapping show that Pd content in the pentlandite increases toward contacts with ISS and decreases toward contacts with MSS, supporting a reaction origin of pentlandite. The wide variations of the concentrations of major and trace elements in the solid solutions, as well as the coexistence of Pd-poor (a few ppm Pd) and Pd-rich (over 4.62 wt % Pd) pentlandite within a single sample, seem to characterize the different generations of the MSS to MSS-ISS globules, antecrysts, and phenocrysts with the distinct histories of enrichment due to exchange with fractionated Cu-platinum group element-rich residue. The directional distribution of Pd of high-temperature primary magmatic origin is preserved due to rapid quenching of the sulfides from ~650°C.


Author(s):  
T. Nagatani

Although the main development of scanning electron microscopy (SEM) has been accomplished mostly by the Cambridge group and it has not been changed so much for about two decades, it should be noted that there have been two important developments to pursuing high resolution of better than 1nm.Most notably, use of a field emission gun developed by Crewe et al for the scanning transmission electron microscope (STEM) to form a fine electron beam has been most effective in SEMs due to its high brightness and low energy spread. Thus, several models of field emission (FE) SEMs have been developed in the early ’70s and commercialized with a resolution of 2∼3nm at around 30kV.The second development is to use a highly excited objective lens. The specimen has to be set inside the pole-pieces (so-called “in-lens” type).


2021 ◽  
Vol 59 (6) ◽  
pp. 1511-1542
Author(s):  
Yiguan Lu ◽  
C. Michael Lesher ◽  
Liqiang Yang ◽  
Matthew I. Leybourne ◽  
Wenyan He ◽  
...  

ABSTRACT The Jinbaoshan platinum group element-(Cu)-(Ni) deposit in southwest China is a sulfide-poor magmatic platinum-group element deposit that experienced multiple phases of post-magmatic modification. The sulfide assemblages of most magmatic Ni-Cu-platinum-group element deposits in China and elsewhere in the world are dominated by pentlandite-pyrrhotite-chalcopyrite with lesser magnetite and minor platinum-group minerals. However, Jinbaoshan is characterized by (1) hypogene violarite-pyrite 1-millerite-chalcopyrite and (2) supergene violarite-(polydymite)-pyrite 2-chalcopyrite assemblages. The platinum-group minerals are small (0.5–10 μm diameter) and include moncheite Pt(Te,Bi)2, mertieite-I Pd11(Sb,As)4, the atokite Pd3Sn – rustenburgite Pt3Sn solid solution, irarsite IrAsS, and sperrylite PtAs2 hosted mainly by violarite, silicates (primarily serpentine), and millerite. The platinum-group minerals occur in two sulfide assemblages: (1) mertieite-I-dominant (with irarsite, palladium, and Pd-alloy) in the hypogene assemblage and (2) moncheite-dominant (with irarsite, sperrylite, and atokite) in the supergene assemblage. Palladium and intermediate platinum-group elements (Os, Ir, Ru) are concentrated mainly in violarite, polydymite, and pyrite 2. Platinum is seldom hosted by base metal sulfides and occurs mainly as discrete platinum-group minerals, such as moncheite, sperrylite, and merenskyite. Violarite and polydymite in the Jinbaoshan deposit contain more Pb-Ag than pentlandite and pyrrhotite in the Great Dyke and Lac des Iles deposit. The formation of the sulfide assemblages in Jinbaoshan can be interpreted to have occurred in three stages: (1) a magmatic Fe-Ni-Cu sulfide melt crystallized Fe-Ni monosulfide and Cu-rich intermediate solid solutions, which inverted to a primary pyrrhotite-pentlandite-chalcopyrite-magnetite assemblage; (2) an early-secondary hypogene voilarite-millterite-pyrite 1-chalcopyrite assemblage formed by interaction with a lower-temperature magmatic-hydrothermal deuteric fluid; and (3) a late-secondary supergene violarite-polydymite-pyrite 2-chalcopyrite assemblage formed during weathering. Late-magmatic-hydrothermal fluids enriched the mineralization in Pb-Ag-Cd-Zn, which are incompatible in monosulfide solid solution, added Co-Pt into violarite, and expelled Pd to the margins of hypogene violarite and millerite, which caused Pd depletion in the hypogene violarite and the formation of mertieite-I. Supergene violarite inherited Pd and intermediate platinum-group elements from primary pentlandite. Thus, the unusual sulfide assemblages in the Jinbaoshan platinum-group element-(Cu)-(Ni) deposit results from multiple overprinted post-magmatic processes, but they did not significantly change the chalcophile element contents of the mineralization, which is interpreted to have formed at high magma:sulfide ratios (R factors) through interaction of crustally derived sulfide and a hybrid picritic-ferropicritic magma derived from subduction-metasomatized pyroxenitic mantle during impingement of the Emeishan plume on the Paleo-Tethyan oceanic subduction system.


1997 ◽  
Vol 61 (409) ◽  
pp. 861-877 ◽  
Author(s):  
Fernando Gervilla ◽  
Alejandro Sáncnez-Anguita ◽  
Rogelio D. Acevedo ◽  
Purificación Fenoll Hach-Ali ◽  
Andres Paniagua

AbstractThe Las Aguilas Ni-Cu-PGE deposit is associated with a sequence of basic-ultrabasic rocks made up of dunite, harzurgite, norite and amphibolite. These igneous (partially metamorphosed) rocks, and their host granulites, gneisses and migmatites of probable Precambrian age, are highly folded. The sulphide ore, consisting of pyrrhotite, pentlandite and chalcopyrite, occurs in the cores of both antiform and synform structures, within dunite, harzburgite and mainly along shear zones in bronzitite, replacing small mylonitic subgrains. The platinum-group mineral assemblage is dominated by Pd bismuthotellurides (Pt-free merenskyite, palladian bismuthian melonite and michenerite), with minor sperrylite, and PGE-sulpharsenides. The latter often occur as single, zoned crystals frequently showing cores of irarsite; outside these are concentric zones of cobaltian hollingworthite, rhodian nickelian cobaltite and Fe-rich nickelian cobaltite.Mineralogical, textural and chemical evidence indicate that the sperrylite and platinum-group element sulpharsenides were formed during a primary magmatic event associated with the fractionation of a basaltic melt, which was contaminated by the assimilation of metamorphic crustal rocks. PGE sulpharsenides crystallized from As-bearing, residual magmatic liquids that collected PGE and segregated after the crystallization of the monosulfide solid solution. During high-grade metamorphism, sulpharsenides were remobilized as solid crystals in the liquated sulfides suffering partial dissolution and fracturing. On the other hand, there is no evidence of a primary concentration of Pd-bismuthotelluride minerals, and their present spatial distribution is only the consequence of their formation under high- to medium-grade metamorphism, down to temperatures of below 500°C. Pd bismuthotellurides crystallize even in fractures of sulpharsenides, attached to the boundaries of highly dissolved sulpharsenide crystals, and intergrown with molybdenite.


2021 ◽  
Vol 59 (6) ◽  
pp. 1599-1626
Author(s):  
William D. Smith ◽  
Wolfgang D. Maier ◽  
Ian Bliss

ABSTRACT We have characterized the distribution of noble metals among six styles of magmatic sulfide mineralization in the Montagnais Sill Complex of the Labrador Trough in northern Québec using optical and electron microscopy combined with laser ablation-inductively coupled plasma-mass spectrometry trace element analysis of sulfides. The principal sulfide minerals include pyrrhotite, chalcopyrite, and pentlandite with accessory sphalerite and sulfarsenides. In addition, cubanite, troilite, and mackinawite are present in ultramafic-hosted assemblages. The precious metal mineral assemblages are dominated by tellurides, Ag-rich gold, and sperrylite which generally occur at the margins of sulfides. Few iridium-group platinum group element- and Rh-bearing grains were identified and mass-balance calculations show that these elements are generally hosted in pyrrhotite and pentlandite. Virtually all Pt and Au are hosted in precious metal grains, whereas Pd is distributed between precious metal grains and pentlandite. Where present, sulfarsenides are a key host of iridium-group platinum group element, Rh, Pd, Te, and Au. The presence of troilite, cubanite, and mackinawite and the absence of pentlandite exsolution lamellae in the ultramafic-hosted sulfides indicates an initial sulfide melt with a high metal/S ratio. Sulfarsenides present among globular sulfide assemblages derive from an immiscible As-rich melt that exsolved from the sulfide melt in response to the assimilation of the As-bearing floor rocks. In this study, the composition of sulfides is consistent with those derived from Ni-Cu-dominated deposits and not platinum group element-dominated deposits.


Sign in / Sign up

Export Citation Format

Share Document