scholarly journals Effect of Neuromuscular Electrical Stimulation Addition in Exercise with Expiratory Muscle Trainer on FEV1 And FVC in Untrained Healthy Subjects

2014 ◽  
Vol 30 (5) ◽  
pp. 365-372 ◽  
Author(s):  
KJ Williams ◽  
HM Moore ◽  
AH Davies

Introduction Enhancement of peripheral circulation has been shown to be of benefit in many vascular disorders, and the clinical effectiveness of intermittent pneumatic compression is well established in peripheral vascular disease. This study compares the haemodynamic efficacy of a novel neuromuscular electrical stimulation device with intermittent pneumatic compression in healthy subjects. Methods Ten healthy volunteers (mean age 27.1 ± 3.8 years, body mass index 24.8 ± 3.6 kg/m2) were randomised into two groups, in an interventional crossover trial. Devices used were the SCD Express™ Compression System, (Covidien, Ireland) and the geko™, (Firstkind Ltd, UK). Devices were applied bilaterally, and haemodynamic measurements taken from the left leg. Changes to haemodynamic parameters (superficial femory artery and femoral vein) and laser Doppler measurements from the hand and foot were compared. Results Intermittent pneumatic compression caused 51% ( p = 0.002), 5% (ns) and 3% (ns) median increases in venous peak velocity, time-averaged maximum velocity and volume flow, respectively; neuromuscular electrical stimulator stimulation caused a 103%, 101% and 101% median increases in the same parameters (all p = 0.002). The benefit was lost upon deactivation. Intermittent pneumatic compression did not improve arterial haemodynamics. Neuromuscular electrical stimulator caused 11%, 84% and 75% increase in arterial parameters ( p < 0.01). Laser Doppler readings taken from the leg were increased by neuromuscular electrical stimulator ( p < 0.001), dropping after deactivation. For intermittent pneumatic compression, the readings decreased during use but increased after cessation. Hand flux signal dropped during activation of both devices, rising after cessation. Discussion The neuromuscular electrical stimulator device used in this study enhances venous flow and peak velocity in the legs of healthy subjects and is equal or superior to intermittent pneumatic compression. This warrants further clinical and economic evaluation for deep venous thrombosis prophylaxis and exploration of the haemodynamic effect in venous pathology. It also enhances arterial time-averaged maximum velocity and flow rate, which may prove to be of clinical use in the management of peripheral arterial disease. The effect on the microcirculation as evidenced by laser Doppler fluximetry may reflect a clinically beneficial target in microvascular disease, such as in the diabetic foot.


Author(s):  
Shi-Chun Bao ◽  
Wing-Cheong Leung ◽  
Vincent C. K. Cheung ◽  
Ping Zhou ◽  
Kai-Yu Tong

Abstract Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.


2017 ◽  
Vol 57 ◽  
pp. 18-19
Author(s):  
A. Botter ◽  
I. Varvello ◽  
A. Casella ◽  
N.A. Maffiuletti ◽  
G. Massazza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document