scholarly journals Simulating 3r robot dynamics using imported cad in Maplesim

With the development of information technology, many applications of robots are increasingly being applied to support research, learning, and teaching. This paper mainly investigates the modeling and simulation of a robotic arm with 3 degrees of freedom (dofs) for different applications. First, Kinematics and dynamics model of the robot based on the standard Denavit Hartenberg (D-H) modeling method, where the forward kinematics of robot is analyzed and computed to obtain by using the inverse kinematics, and then the solution of the robot dynamics is derived. Second, a CAD model of the robot is designed on CATIA software to convert to MapleSim software to simulation and control. Final, numerical simulation is presented to display results. This work provides a potential basis for the realization of the robotic arm in the industrial, education, and research field, which is of great significance for improving manufacturing efficiency and support teaching and research in the robot field.

Author(s):  
A. Mirbagheri ◽  
F. Farahmand ◽  
A. Meghdari ◽  
H. Sayyaadi ◽  
L. Savoj ◽  
...  

Laparoscopic surgery is a specific branch of minimally invasive surgery (MIS) that is performed on the abdomen and endoscopic tools are passed through the incision points and trocars on the abdominal wall, so they can reach the surgical site [1]. Robotic systems have been proved to be very useful as a cameraman in laparoscopic surgery; they are more stable with no fatigue and inattention and reduce the supernumerary staff required, provide excellent geometrical accuracy and improved personal control for the surgeon over the procedure, etc. The available robots for handling and control of laparoscopic lens include at least 4 actuators to fulfill the surgeon’s requirements [2]. The purpose of the present study was to develop a novel design for the laparoscope robotic arm in which while the systems move ability is maintained its active degrees of freedom are reduced.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


2012 ◽  
Vol 6 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Michael R Dawson ◽  
Farbod Fahimi ◽  
Jason P Carey

The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.


Author(s):  
Christof Paulus ◽  
Albert Weber

AbstractVenice is considered the best-informed community of the late Middle Ages. The study examines the availability of information for the second half of the 15th century, particularly with regard to the key year 1462/1463, and as a case study concentrates on areas of the supposed Venetian periphery of interest, above all Hungary and the two principalities of Wallachia and Moldavia. The result is a thoroughly differentiated system of information acquisition, verification and control. Means of communication, as well as different areas of interest of the Serenissima, can be identified. A distinction is made between information maps and communication maps. The latter also include the distribution of news from the lagoon city exchanged with foreign envoys. During the period concerned, news was exchanged in an astonishingly liberal way, in turn integrating the Serenissima into the information networks of the other Italian states. The study thus places the „information commodity“ within the research field of late medieval gift exchange and patronage structures. In short, a thoroughly pragmatic Venetian approach to news acquisition and evaluation can be observed. Verification of the quality of the information obtained was subject not least to quantitative and ranking criteria. Ultimately, the informational power of Venice was based above all on its outstanding reputation among its contemporaries.


Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


Sign in / Sign up

Export Citation Format

Share Document