scholarly journals Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control

Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.

2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis, and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees-of-freedom in movement and flexible design. However, to take full advantage of these properties, a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable, and power routing systems and increased design difficulty. Here, we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture, and simulations of TT-3, an untethered, fully actuated cable-driven six-bar spherical tensegrity robot. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system's behavior and performance and is evaluated against previous models of tensegrity robots developed at UC Berkeley and elsewhere.


2008 ◽  
Vol 5 (3) ◽  
pp. 99-117 ◽  
Author(s):  
Deepak Trivedi ◽  
Christopher D. Rahn ◽  
William M. Kier ◽  
Ian D. Walker

Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks) are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.


Author(s):  
Muhammad Bilal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


2013 ◽  
Vol 35 ◽  
pp. 589-594
Author(s):  
Martin Stofanko ◽  
Joan C. Han ◽  
Sarah H. Elsea ◽  
Heloísa B. Pena ◽  
Higgor Gonçalves-Dornelas ◽  
...  

Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.


Author(s):  
Niko Giannakakos ◽  
Ayse Tekes ◽  
Tris Utschig

Abstract Mechanical engineering students often learn the fundamentals of vibrations along with the time response of underdamped, critically damped, and overdamped systems in machine dynamics and vibrations courses without any validation or visualization through hands-on experimental learning activities. As these courses are highly theoretical, students find it difficult to connect theory to practical fundamentals such as modeling of a mechanical system, finding components of the system using experimental data, designing a system to achieve a desired response, or designing a passive vibration isolator to reduce transmitted vibrations on a primary system. Further, available educational laboratory equipment demonstrating vibrations, dynamics and control is expensive, bulky, and not portable. To address these issues, we developed a low-cost, 3D printed, portable laboratory equipment (3D-PLE) system consisting of primary and secondary carts, rail, linear actuator, Arduino, and compliant flexures connecting the carts. Most of the educational systems consist of a mass limited to 1DOF motion and multi-degrees of freedom systems can be created using mechanical springs. However, in real-world applications oscillations in a system are not necessarily due to mechanical springs. Anything flexible, or thin and long, can be represented by a spring as seen in torsional systems. We incorporated 3D printed and two monolithically designed rigid arms connected with a flexure hinge of various stiffness. The carts are designed in a way such that two flexible links can be attached from both sides and allow more loads to be added on each cart. The system can be utilized to demonstrate fundamentals of vibrations and test designs of passive isolators to dampen the oscillations of the primary cart.


Author(s):  
Abed Cheikh Brahim ◽  
Khelladi Sofiane ◽  
Deligant Michael ◽  
El Marjani Abdel ◽  
Farid Bakir

Abstract Turbomachinery with double counter-rotating impellers offer more degrees of freedom in the choice of design and control parameters compared to conventional machines. For these innovative machines, the literature review shows that more published works are available concerning axial type turbomachines than centrifugal ones. This work deals with a preliminary design and performance analysis applied to two counter-rotating impellers of a centrifugal compressor. We present here the design practice developed based on 0D/1D models, also coupled with optimization and stream-curvature through-flow methods to satisfy the selected design-criteria. An analyze of aerodynamic performances results are made and compared to those available experimental and numerical data of a baseline configuration, composed of one centrifugal-impeller and a volute. The compressor studied here includes a first conventional impeller with an axial inlet and a mixed or centrifugal outlet. The second impeller is designed parametrically and can be considered as a rotating-diffuser with a radial or mixed inlet and outlet. Ultimately, the numerical simulation results of a selection of candidate solutions are discussed.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668885 ◽  
Author(s):  
Xin Li ◽  
Qiang Huang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Jinying Zhu ◽  
...  

This article presents a novel under-actuated robot hand, which has a thumb and two cooperative fingers. The thumb has two joints with 2 degrees of freedom driven by one motor. Each of the other two fingers has the same mechanism structure with the thumb and forms a cooperative mechanism, which is driven by only one motor with 4 degrees of freedom in total. All the under-actuated fingers are designed with the transmission mechanisms based on a kind of mechanism combined with the linkage mechanism and the passive elements. In this article, it is shown that under-actuated hand is able to reproduce most of the grasping behaviors of the human hand anthropomorphically and self-adaptively, without increasing the complexity of mechanism and control. The grasping stability analysis is given to help to understand the size range and load range of a stable grasp. Finally, the experiment results verify the high efficiency and stability of the novel mechanism.


1993 ◽  
Vol 115 (2B) ◽  
pp. 281-290 ◽  
Author(s):  
H. Kazerooni ◽  
Jenhwa Guo

A human’s ability to perform physical tasks is limited by physical strength, not by intelligence. We coined the word “extenders” as a class of robot manipulators worn by humans to augment human mechanical strength, while the wearer’s intellect remains the central control system for manipulating the extender. Our research objective is to determine the ground rules for the control of robotic systems worn by humans through the design, construction, and control of several prototype experimental direct-drive/non-direct-drive multi-degree-of-freedom hydraulic/electric extenders. The design of extenders is different from the design of conventional robots because the extender interfaces with the human on a physical level. The work discussed in this article involves the dynamics and control of a prototype hydraulic six-degree-of-freedom extender. This extender’s architecture is a direct drive system with all revolue joints. Its linkage consists of two identical subsystems, the arm and the hand, each having three degrees of freedom. Two sets of force sensors measure the forces imposed on the extender by the human and by the environment (i.e., the load). The extender’s compliances in response to such contact forces were designed by selecting appropriate force compensators. The stability of the system of human, extender, and object being manipulated was analyzed. A mathematical expression for the extender performance was determined to quantify the force augmentation. Experimental studies on the control and performance of the experimental extender were conducted to verify the theoretical predictions.


2013 ◽  
Vol 332 ◽  
pp. 491-496 ◽  
Author(s):  
Ionut Daniel Geonea ◽  
Cătălin Alexandru ◽  
Alexandru Margine ◽  
Alin Ungureanu

In this paper is carried out the selection and simulation of a one degrees of freedom (DOF) leg mechanism. The leg mechanism consist of a nine bar linkage and is based on a Low-cost Easy-operation idea. Virtual simulation tests of the model shows the feasible of the proposed leg mechanism, for human leg motion assistance. Kinematics and dynamics analysis of the leg mechanism is carried out. Finally, dynamic simulation results reveal the motion characteristics and performance of the leg mechanism.


2021 ◽  
Vol 11 (13) ◽  
pp. 6116
Author(s):  
Vítor H. Pinto ◽  
Inês N. Soares ◽  
Marco Rocha ◽  
José Lima ◽  
José Gonçalves ◽  
...  

This paper presents a legged-wheeled hybrid robotic vehicle that uses a combination of rigid and non-rigid joints, allowing it to be more impact-tolerant. The robot has four legs, each one with three degrees of freedom. Each leg has two non-rigid rotational joints with completely passive components for damping and accumulation of kinetic energy, one rigid rotational joint, and a driving wheel. Each leg uses three independent DC motors—one for each joint, as well as a fourth one for driving the wheel. The four legs have the same position configuration, except for the upper hip joint. The vehicle was designed to be modular, low-cost, and its parts to be interchangeable. Beyond this, the vehicle has multiple operation modes, including a low-power mode. Across this article, the design, modeling, and control stages are presented, as well as the communication strategy. A prototype platform was built to serve as a test bed, which is described throughout the article. The mechanical design and applied hardware for each leg have been improved, and these changes are described. The mechanical and hardware structure of the complete robot is also presented, as well as the software and communication approaches. Moreover, a realistic simulation is introduced, along with the obtained results.


Sign in / Sign up

Export Citation Format

Share Document