scholarly journals Mindfulness meditation alters neural activity underpinning working memory during tactile distraction

2020 ◽  
Vol 20 (6) ◽  
pp. 1216-1233
Author(s):  
Michael Yufeng Wang ◽  
Gabrielle Freedman ◽  
Kavya Raj ◽  
Bernadette Mary Fitzgibbon ◽  
Caley Sullivan ◽  
...  
2019 ◽  
Author(s):  
Michael Yufeng Wang ◽  
Gabrielle Freedman ◽  
Kavya Raj ◽  
Bernadette Mary Fitzgibbon ◽  
Caley Sullivan ◽  
...  

AbstractEvidence suggests that mindfulness meditation (MM) improves selective attention and reduces distractibility by enhancing top-down neural modulation. Altered P300 and alpha neural activity from MM have been identified and may reflect the neural changes that underpin these improvements. Given the proposed role of alpha activity in supressing processing of task-irrelevant information, it is theorised that altered alpha activity may underlie increased availability of neural resources in meditators. The present study investigated attentional function in meditators using a cross-modal study design, examining the P300 during working memory (WM) and alpha activity during concurrent distracting tactile stimuli. Thirty-three meditators and 27 healthy controls participated in the study. Meditators showed a more frontal distribution of P300 neural activity following WM stimuli (p = 0.005, η² = 0.060) and more modulation of alpha activity at parietal-occipital regions between single (tactile stimulation only) and dual task demands (tactile stimulation plus WM task) (p < 0.001, η² = 0.065). Additionally, meditators performed more accurately than controls (p = 0.038, η² = 0.067). The altered distribution of neural activity concurrent with improved WM performance suggests greater attentional resources dedicated to task related functions such as WM in meditators. Thus, meditation-related neural changes are likely multi-faceted involving both altered distribution and also amplitudes of brain activity, enhancing attentional processes depending on task requirements.


2021 ◽  
pp. 1-41
Author(s):  
Russell J. Jaffe ◽  
Christos Constantinidis

2020 ◽  
pp. 311-332
Author(s):  
Nicole Hakim ◽  
Edward Awh ◽  
Edward K. Vogel

Visual working memory allows us to maintain information in mind for use in ongoing cognition. Research on visual working memory often characterizes it within the context of its interaction with long-term memory (LTM). These embedded-processes models describe memory representations as existing in three potential states: inactivated LTM, including all representations stored in LTM; activated LTM, latent representations that can quickly be brought into an active state due to contextual priming or recency; and the focus of attention, an active but sharply limited state in which only a small number of items can be represented simultaneously. This chapter extends the embedded-processes framework of working memory. It proposes that working memory should be defined operationally based on neural activity. By defining working memory in this way, the important theoretical distinction between working memory and LTM is maintained, while still acknowledging that they operate together. It is additionally proposed that active working memory should be further subdivided into at least two subcomponent processes that index item-based storage and currently prioritized spatial locations. This fractionation of working memory is based on recent research that has found that the maintenance of information distinctly relies on item-based representations as well as prioritization of spatial locations. It is hoped that this updated framework of the definition of working memory within the embedded-processes model provides further traction for understanding how we maintain information in mind.


NeuroImage ◽  
2008 ◽  
Vol 42 (4) ◽  
pp. 1577-1586 ◽  
Author(s):  
Lisa Emery ◽  
Timothy J. Heaven ◽  
Jessica L. Paxton ◽  
Todd S. Braver

2020 ◽  
Vol 13 ◽  
Author(s):  
Kilian Abellaneda-Pérez ◽  
Lídia Vaqué-Alcázar ◽  
Ruben Perellón-Alfonso ◽  
Núria Bargalló ◽  
Min-Fang Kuo ◽  
...  

2015 ◽  
Vol 231 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Christian Knöchel ◽  
Viola Oertel-Knöchel ◽  
Robert Bittner ◽  
Michael Stäblein ◽  
Vera Heselhaus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document