scholarly journals Mindfulness meditation alters neural activity underpinning working memory during tactile distraction

2019 ◽  
Author(s):  
Michael Yufeng Wang ◽  
Gabrielle Freedman ◽  
Kavya Raj ◽  
Bernadette Mary Fitzgibbon ◽  
Caley Sullivan ◽  
...  

AbstractEvidence suggests that mindfulness meditation (MM) improves selective attention and reduces distractibility by enhancing top-down neural modulation. Altered P300 and alpha neural activity from MM have been identified and may reflect the neural changes that underpin these improvements. Given the proposed role of alpha activity in supressing processing of task-irrelevant information, it is theorised that altered alpha activity may underlie increased availability of neural resources in meditators. The present study investigated attentional function in meditators using a cross-modal study design, examining the P300 during working memory (WM) and alpha activity during concurrent distracting tactile stimuli. Thirty-three meditators and 27 healthy controls participated in the study. Meditators showed a more frontal distribution of P300 neural activity following WM stimuli (p = 0.005, η² = 0.060) and more modulation of alpha activity at parietal-occipital regions between single (tactile stimulation only) and dual task demands (tactile stimulation plus WM task) (p < 0.001, η² = 0.065). Additionally, meditators performed more accurately than controls (p = 0.038, η² = 0.067). The altered distribution of neural activity concurrent with improved WM performance suggests greater attentional resources dedicated to task related functions such as WM in meditators. Thus, meditation-related neural changes are likely multi-faceted involving both altered distribution and also amplitudes of brain activity, enhancing attentional processes depending on task requirements.

2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2015 ◽  
Vol 27 (3) ◽  
pp. 453-463 ◽  
Author(s):  
Satoe Ichihara-Takeda ◽  
Shogo Yazawa ◽  
Takashi Murahara ◽  
Takanobu Toyoshima ◽  
Jun Shinozaki ◽  
...  

Oscillatory brain activity is known to play an essential role in information processing in working memory. Recent studies have indicated that alpha activity (8–13 Hz) in the parieto-occipital area is strongly modulated in working memory tasks. However, the function of alpha activity in working memory is open to several interpretations, such that alpha activity may be a direct neural correlate of information processing in working memory or may reflect disengagement from information processing in other brain areas. To examine the functional contribution of alpha activity to visuospatial working memory, we introduced visuospatial distractors during a delay period and examined neural activity from the whole brain using magnetoencephalography. The strength of event-related alpha activity was estimated using the temporal spectral evolution (TSE) method. The results were as follows: (1) an increase of alpha activity during the delay period as indicated by elevated TSE curves was observed in parieto-occipital sensors in both the working memory task and a control task that did not require working memory; and (2) an increase of alpha activity during the delay period was not observed when distractors were presented, although TSE curves were constructed only from correct trials. These results indicate that the increase of alpha activity is not directly related to information processing in working memory but rather reflects the disengagement of attention from the visuospatial input.


2021 ◽  
Author(s):  
Abbie S. Taing ◽  
Matthew E. Mundy ◽  
Jennie L. Ponsford ◽  
Gershon Spitz

AbstractImpaired working memory capacity is a common and disabling consequence of traumatic brain injury (TBI) that is caused by aberrant neural processing. However, due to high heterogeneity in results across studies, it is challenging to conclude whether impaired working memory in this population is driven by neural hypo- or hyper-activation, and the extent to which deficits are perpetuated by specific working memory subprocesses. Using a combined functional magnetic resonance imaging and working memory paradigm, we tested the hypothesis that the pattern of neural activation subserving working memory following TBI would interact with both task demands and specific working memory subcomponents: encoding, maintenance, and retrieval. Behaviourally, we found that working memory deficits were confined to the high cognitive load trials. Our results confirmed our key prediction. Overall, TBI participants showed reduced brain activity while performing the working memory task. However, interrogation of the subcomponents of working memory revealed a more nuanced pattern of activation. When we simply averaged across all task trials, regardless of cognitive load or subcomponent, TBI participants showed reduced neural activation. When examined more closely, patterns of brain activity following TBI were found to interact with both task demands and working memory subcomponent. Participants with TBI demonstrated an inability to appropriately modulate brain activity between low and high demand conditions necessary during encoding and maintenance stages. Therefore, we demonstrate that conclusions about aberrant neural processing are dependent upon the level of analysis and the extent to which general cognitive domains can be parcellated into its constituent parts.


2008 ◽  
Vol 20 (7) ◽  
pp. 1342-1353 ◽  
Author(s):  
Maura L. Furey ◽  
Emiliano Ricciardi ◽  
Mark B. Schapiro ◽  
Stanley I. Rapoport ◽  
Pietro Pietrini

Previously, we demonstrated that enhancing cholinergic activity during a working memory (WM) task improves performance and reduces blood flow in the right anterior middle/superior frontal cortex, an area known to be important for WM. The purpose of this study was to evaluate the interaction between WM task demands and cholinergic enhancement on neural responses in the prefrontal cortex. Regional cerebral blood flow (rCBF) was measured using H215O and positron emission tomography, as 10 young healthy volunteers performed a parametrically varied match-to-sample WM for faces task. For each item, a picture of a face was presented, followed by a delay (1, 6, 11, or 16 sec), then by the presentation of two faces. Subjects were instructed to identify which face they previously had seen. For control items, nonsense pictures were presented in the same spatial and temporal manner. All conditions were performed during an intravenous infusion of saline and physostigmine (1 mg/hr). Subjects were blind to the substance being infused. Reaction time increased significantly with WM delay, and physostigmine decreased reaction time across delay conditions. Significant task-related rCBF increases during saline infusion were seen in superior frontal, middle frontal, and inferior frontal regions, and the response magnitudes in the regions increased systematically with task difficulty. In all of these prefrontal regions, physostigmine administration significantly reduced rCBF during task, particularly at longer task delays, so that no correlation between task delay and rCBF was observed. In the ventral visual cortex, physostigmine increased rCBF at longer task delays in medial regions, and decreased rCBF over delay conditions in lateral cortical areas. These results indicate that, during cholinergic potentiation, brain activity in prefrontal regions is not modulated by increases in WM task demands, and lends further support to the hypothesis that cholinergic modulation enhances visual processing, making the task easier to perform, and thus, compensate for the need to recruit prefrontal cortical regions as task demands increase.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Nicolas et Farrugia ◽  
Alain Dagher ◽  
Pierre Bellec

Brain decoding aims to infer human cognition from recordings of neural activity using modern neuroimaging techniques. Studies so far often concentrated on a limited number of cognitive states and aimed to classifying patterns of brain activity within a local area. This procedure demonstrated a great success on classifying motor and sensory processes but showed limited power over higher cognitive functions. In this work, we investigate a high-order graph convolution model, named ChebNet, to model the segregation and integration organizational principles in neural dynamics, and to decode brain activity across a large number of cognitive domains. By leveraging our prior knowledge on brain organization using a graph-based model, ChebNet graph convolution learns a new representation from task-evoked neural activity, which demonstrates a highly predictive signature of cognitive states and task performance. Our results reveal that between-network integration significantly boosts the decoding of high-order cognition such as visual working memory tasks, while the segregation of localized brain activity is sufficient to classify motor and sensory processes. Using twin and family data from the Human Connectome Project (n = 1,070), we provide evidence that individual variability in the graph representations of working-memory tasks are under genetic control and strongly associated with participants in-scanner behaviors. These findings uncover the essential role of functional integration in brain decoding, especially when decoding high-order cognition other than sensory and motor functions.


2019 ◽  
Author(s):  
Joshua J. Foster ◽  
Edward K. Vogel ◽  
Ed Awh

Working memory (WM) is an online memory system that allows us to hold information “in mind” in service of ongoing cognitive processing. Here, we emphasize that short-term retention of information typically involves an interplay between WM and long-term memory (LTM), especially when task demands or interruptions divert our focus from remembered items. We suggest that active neural representation may distinguish between “online” representations in WM and “offline” representations in LTM. This perspective is at odds with “activity-silent” models of WM, which hold that WM representations can be sustained without persistent neural activity. We suggest that activity-silent representations might be more productively conceptualized as offline representations in LTM because accessing these representations shows multiple signatures of retrieval from LTM. Moreover, active neural traces track WM load, predict individual differences in performance, and respect sharp item limits in WM storage. Thus, we argue that using neural activity as an operational definition of WM may provide strong traction for studying the dynamic collaboration between WM and LTM that is critical for intelligent behavior.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kartik K. Iyer ◽  
Kai Hwang ◽  
Luke J. Hearne ◽  
Eli Muller ◽  
Mark D’Esposito ◽  
...  

AbstractThe emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain’s low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.


2020 ◽  
Vol 20 (6) ◽  
pp. 1216-1233
Author(s):  
Michael Yufeng Wang ◽  
Gabrielle Freedman ◽  
Kavya Raj ◽  
Bernadette Mary Fitzgibbon ◽  
Caley Sullivan ◽  
...  

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A18-A19
Author(s):  
Molly Zimmerman ◽  
Christiane Hale ◽  
Adam Brickman ◽  
Lok-Kin Yeung ◽  
Justin Cochran ◽  
...  

Abstract Introduction Sleep loss has a range of detrimental effects on cognitive ability. However, few studies have examined the impact of sleep restriction on neuropsychological function using an experimental design. The goal of this study was to examine the extent to which maintained insufficient sleep affects cognition in healthy adults compared to habitual adequate sleep. Methods This study used a randomized, crossover, outpatient sleep restriction design. Adults who regularly slept at least 7 h/night, verified by 2 weeks of screening with actigraphy, completed 2 phases of 6 weeks each: habitual sleep (&gt;7 h of sleep/night) or sleep restriction (habitual sleep minus 1.5 h) separated by a 6-week washout period. During the sleep restriction phase, participants were asked to delay their bedtime by 1.5 hours/night while maintaining their habitual wake time. Neuropsychological function was evaluated with the NIH Toolbox Cognition Battery at baseline (week 0) and endpoint (week 6) of each intervention phase. The NIH Toolbox evaluates a range of cognitive abilities, including attention, executive functioning, and working memory. General linear models with post hoc paired t-tests were used to assess demographically-adjusted test scores prior to and following each sleep condition. Results At the time of analyses, 16 participants were enrolled (age 34.5□14.5 years, 9 women), 10 of whom had completed study procedures. An interaction between sleep condition and testing session revealed that individuals performed worse on List Sorting, a working memory test, after sleep restriction but improved slightly after habitual sleep (p&lt;0.001). While not statistically reliable, the pattern of test results was similar on the other tests of processing speed, executive function, and attention. Conclusion In these preliminary results from this randomized experimental study, we demonstrated that sleep restriction has a negative impact while stable habitual adequate sleep has a positive impact on working memory, or the ability to temporarily hold information in mind while executing task demands. This finding contributes to our understanding of the complex interplay between different aspects of sleep quality (i.e., both sleep restriction as well as the maintenance of stable sleep patterns) on cognition and underscores the importance of routine sleep screening as part of medical evaluations. Support (if any):


Sign in / Sign up

Export Citation Format

Share Document