scholarly journals Beyond decision! Motor contribution to speed–accuracy trade-off in decision-making

2016 ◽  
Vol 24 (3) ◽  
pp. 950-956 ◽  
Author(s):  
Laure Spieser ◽  
Mathieu Servant ◽  
Thierry Hasbroucq ◽  
Borís Burle
Author(s):  
Gabriel Spitz ◽  
Colin G. Drury

The two-stage model of inspection performance suggested in a previous paper was tested in laboratory conditions. Four subjects participated in an experiment to estimate the visual search and decision making components of an inspection task using light circular targets of low contrast on a dark empty field. Predicted and measured performance on the inspection task were compared. It was found that the prediction of independence of component tasks and additivity was upheld. In predicting speed/accuracy trade-off, the model's performance was better for the high contrast conditions than for the more difficult low contrast conditions.


2017 ◽  
Author(s):  
Gregory Edward Cox ◽  
Rich Shiffrin

We present a dynamic model of memory that integrates the processes of perception, retrieval from knowledge, retrieval of events, and decision making as these evolve from one moment to the next. The core of the model is that recognition depends on tracking changes in familiarity over time from an initial baseline generally determined by context, with these changes depending on the availability of different kinds of information at different times. A mathematical implementation of this model leads to precise, accurate predictions of accuracy, response time, and speed-accuracy trade-off in episodic recognition at the levels of both groups and individuals across a variety of paradigms. Our approach leads to novel insights regarding word frequency, speeded responding, context reinstatement, short-term priming, similarity, source memory, and associative recognition, revealing how the same set of core dynamic principles can help unify otherwise disparate phenomena in the study of memory.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jan Drugowitsch ◽  
Gregory C DeAngelis ◽  
Dora E Angelaki ◽  
Alexandre Pouget

For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy trade-off to maximize reward rate. We extend this analysis to situations in which information is provided by multiple sensory modalities. Analyzing previously collected data (<xref ref-type="bibr" rid="bib4">Drugowitsch et al., 2014</xref>), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal reward rates. This trade-off can change rapidly across trials according to the sensory modalities involved, suggesting that it is represented by neural population codes rather than implemented by slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete gradient-based learning of these trade-offs.


2018 ◽  
Vol 120 (2) ◽  
pp. 741-757 ◽  
Author(s):  
Thomas R. Reppert ◽  
Ioannis Rigas ◽  
David J. Herzfeld ◽  
Ehsan Sedaghat-Nejad ◽  
Oleg Komogortsev ◽  
...  

A common aspect of individuality is our subjective preferences in evaluation of reward and effort. The neural circuits that evaluate these commodities influence circuits that control our movements, raising the possibility that vigor differences between individuals may also be a trait of individuality, reflecting a willingness to expend effort. In contrast, classic theories in motor control suggest that vigor differences reflect a speed-accuracy trade-off, predicting that those who move fast are sacrificing accuracy for speed. Here we tested these contrasting hypotheses. We measured motion of the eyes, head, and arm in healthy humans during various elementary movements (saccades, head-free gaze shifts, and reaching). For each person we characterized their vigor, i.e., the speed with which they moved a body part (peak velocity) with respect to the population mean. Some moved with low vigor, while others moved with high vigor. Those with high vigor tended to react sooner to a visual stimulus, moving both their eyes and arm with a shorter reaction time. Arm and head vigor were tightly linked: individuals who moved their head with high vigor also moved their arm with high vigor. However, eye vigor did not correspond strongly with arm or head vigor. In all modalities, vigor had no impact on end-point accuracy, demonstrating that differences in vigor were not due to a speed-accuracy trade-off. Our results suggest that movement vigor may be a trait of individuality, not reflecting a willingness to accept inaccuracy but demonstrating a propensity to expend effort. NEW & NOTEWORTHY A common aspect of individuality is how we evaluate economic variables like reward and effort. This valuation affects not only decision making but also motor control, raising the possibility that vigor may be distinct between individuals but conserved across movements within an individual. Here we report conservation of vigor across elementary skeletal movements, but not eye movements, raising the possibility that the individuality of our movements may be driven by a common neural mechanism of effort evaluation across modalities of skeletal motor control.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


Author(s):  
Bahador Bahrami

Evidence for and against the idea that “two heads are better than one” is abundant. This chapter considers the contextual conditions and social norms that predict madness or wisdom of crowds to identify the adaptive value of collective decision-making beyond increased accuracy. Similarity of competence among members of a collective impacts collective accuracy, but interacting individuals often seem to operate under the assumption that they are equally competent even when direct evidence suggest the opposite and dyadic performance suffers. Cross-cultural data from Iran, China, and Denmark support this assumption of similarity (i.e., equality bias) as a sensible heuristic that works most of the time and simplifies social interaction. Crowds often trade off accuracy for other collective benefits such as diffusion of responsibility and reduction of regret. Consequently, two heads are sometimes better than one, but no-one holds the collective accountable, not even for the most disastrous of outcomes.


Sign in / Sign up

Export Citation Format

Share Document