scholarly journals LexOPS: An R package and user interface for the controlled generation of word stimuli

2020 ◽  
Vol 52 (6) ◽  
pp. 2372-2382
Author(s):  
Jack E. Taylor ◽  
Alistair Beith ◽  
Sara C. Sereno

AbstractLexOPS is an R package and user interface designed to facilitate the generation of word stimuli for use in research. Notably, the tool permits the generation of suitably controlled word lists for any user-specified factorial design and can be adapted for use with any language. It features an intuitive graphical user interface, including the visualization of both the distributions within and relationships among variables of interest. An inbuilt database of English words is also provided, including a range of lexical variables commonly used in psycholinguistic research. This article introduces LexOPS, outlining the features of the package and detailing the sources of the inbuilt dataset. We also report a validation analysis, showing that, in comparison to stimuli of existing studies, stimuli optimized with LexOPS generally demonstrate greater constraint and consistency in variable manipulation and control. Current instructions for installing and using LexOPS are available at https://JackEdTaylor.github.io/LexOPSdocs/.

2019 ◽  
Author(s):  
Jack Edward Taylor ◽  
Alistair Beith ◽  
Sara C. Sereno

LexOPS is an R package and user interface designed to facilitate the generation of word stimuli for use in research. Notably, the tool permits the generation of suitably controlled word lists for any user-specified factorial design and can be adapted for use with any language. It features an intuitive graphical user interface, including the visualization of both the distributions within and relationships among variables of interest. An inbuilt database of English words is also provided, including a range of lexical variables commonly used in psycholinguistic research. This article introduces LexOPS, outlining the features of the package and detailing the sources of the inbuilt dataset. We also report a validation analysis, showing that, in comparison to stimuli of existing studies, stimuli optimised with LexOPS generally demonstrate greater constraint and consistency in variable manipulation and control. Current instructions for installing and using LexOPS are available at https://JackEdTaylor.github.io/LexOPSdocs/.


Author(s):  
Ghulam Mustafa ◽  
Muhammad Tahir Qadri ◽  
Umar Daraz

Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope’s stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert’s opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of a slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist inviewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients.


2015 ◽  
Vol 104 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Ondřej Klejch ◽  
Eleftherios Avramidis ◽  
Aljoscha Burchardt ◽  
Martin Popel

Abstract The tool described in this article has been designed to help MT developers by implementing a web-based graphical user interface that allows to systematically compare and evaluate various MT engines/experiments using comparative analysis via automatic measures and statistics. The evaluation panel provides graphs, tests for statistical significance and n-gram statistics. We also present a demo server http://wmt.ufal.cz with WMT14 and WMT15 translations.


2015 ◽  
Author(s):  
Zeeshan Ahmed

Software design and its engineering is essential for bioinformatics software impact. We propose a new approach ‘Butterfly’, for the betterment of modeling of scientific software solutions by targeting key developmental points: intuitive, graphical user interface design, stable methodical implementation and comprehensive output presentation. The focus of research was to address following three key points: 1) differences and different challenges required to change from traditional to scientific software engineering, 2) scientific software solution development needs feedback and control loops following basic engineering principles for implementation and 3) software design with new approach which helps in developing and implementing a comprehensive scientific software solution. We validated the approach by comparing old and new bioinformatics software solutions. Moreover, we have successfully applied our approach in the design and engineering of different well applied and published Bioinformatics and Neuroinformatics tools including DroLIGHT, LS-MIDA, Isotopo, Ant-App-DB, GenomeVX and Lipid-Pro.


Author(s):  
Víctor PEREZ-GARCIA ◽  
Joel QUINTANILLA-DOMINGUEZ ◽  
Israel YAÑEZ-VARGAS ◽  
José AGUILERA-GONZALEZ

This paper describes the design and development of a Graphical User Interface through the virtual instrumentation software NI LabVIEW using the VISA function, to graphically visualize and storage the data of the climatological variables of temperature and relative humidity. The graphical interface offers the option to export the date, time and data of the two variables to text documents with extension “.txt”, which acquires the information of the electronic board wireless monitoring and control, which uses a main device PIC16F877A microcontroller. AMT1001 Precision Analog Sensor was used to sense temperature and relative humidity. The PIC16F877A was programmed using a C programming language in the CCS Compiler compiler, to the data acquisition, and send it via RS232 communication to the computer, using the PL2303 module USB to TTL converter. To check the GUI operation, the electronic wireless monitoring and control card was connected to the computer equipment by wire, however, the monitoring of the climate variables can be done wirelessly by XBEE technology. Future work aims to monitor the climate of a horticultural greenhouse with XBBE technology, so that the data is sent wirelessly to a computer that has the GUI, and is also connected to Ethernet or WIFI, which will have the LabVIEW graphical interface explained in this article, and the data will be displayed / analyzed through the internet.


2016 ◽  
Author(s):  
Richard Bruskiewich ◽  
Kenneth Huellas-Bruskiewicz ◽  
Farzin Ahmed ◽  
Rajaram Kaliyaperumal ◽  
Mark Thompson ◽  
...  

AbstractKnowledge.Bio is a web platform that enhances access and interpretation of knowledge networks extracted from biomedical research literature. The interaction is mediated through a collaborative graphical user interface for building and evaluating maps of concepts and their relationships, alongside associated evidence. In the first release of this platform, conceptual relations are drawn from the Semantic Medline Database and the Implicitome, two compleme ntary resources derived from text mining of PubMed abstracts.Availability— Knowledge.Bio is hosted at http://knowledge.bio/ and the open source code is available at http://bitbucket.org/sulab/kb1/.Contact— [email protected]; [email protected]


2020 ◽  
Vol 11 (10) ◽  
pp. 1199-1206 ◽  
Author(s):  
Luis Osorio‐Olvera ◽  
Andrés Lira‐Noriega ◽  
Jorge Soberón ◽  
Andrew Townsend Peterson ◽  
Manuel Falconi ◽  
...  

2019 ◽  
Vol 16 (8) ◽  
pp. 3384-3394
Author(s):  
Sathish Kumar Selvaperumal ◽  
Waleed Al-Gumaei ◽  
Raed Abdulla ◽  
Vinesh Thiruchelvam

This paper aims to design and develop a network infrastructure for a smart campus using the Internet of Things which can be used to control different devices and to update the management with real-time data. In this proposed system, NodeMCU ESP8266 is interfaced with thermal and motion sensor for human, humidity and temperature sensor for the room and relay to control the lights and the air-conditioned. MQTT broker is used to acquire the data and control to and from NodeMCU ESP8266, Raspberry pi and LoRa, to be interfaced wirelessly with the Node-Red. Thus, the system is controlled and monitored wirelessly with the help of the developed integrated Graphical User Interface along with the Mobile application. The performance of the developed proposed system is analyzed and evaluated by testing the motion detection in the classroom, the LoRa range with the RSSI, the average time taken by the system to respond, the average time taken for the Graphical User Interface to response and update its data. Finally, the average time taken by the system and the Graphical User Interface to respond to the lights and air-conditioned control systems is less than 1 s, and for the security and parking systems is less than 2 s.


Sign in / Sign up

Export Citation Format

Share Document