scholarly journals Fine root biomass in a tropical moist forest in the upper Negro River basin, Brazilian Amazon

Tropics ◽  
2014 ◽  
Vol 22 (4) ◽  
pp. 179-183
Author(s):  
Hideyuki Noguchi ◽  
Cacilda Ad^|^eacute;lia Sampaio de Souza ◽  
Rosiane Oliveira da Silva ◽  
Rempei Suwa ◽  
Takuya Kajimoto ◽  
...  
2014 ◽  
Vol 48 (2) ◽  
pp. 231-235 ◽  
Author(s):  
Hideyuki NOGUCHI ◽  
Rempei SUWA ◽  
Cacilda Adélia Sampaio de SOUZA ◽  
Roseana Pereira da SILVA ◽  
Joaquim dos SANTOS ◽  
...  

2014 ◽  
Vol 34 (15) ◽  
Author(s):  
赵学春 ZHAO Xuechun ◽  
来利明 LAI Liming ◽  
朱林海 ZHU Linhai ◽  
王健健 WANG Jianjian ◽  
王永吉 WANG Yongji ◽  
...  

2013 ◽  
Vol 2 ◽  
pp. 10-16 ◽  
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

Fine root biomass (<5 mm diameter) was estimated in 0-15 cm and 15- 30 cm soil depths of disturbed and undisturbed stands of tropical moist forest in eastern Nepal. The value of root mass was higher (4.28 t ha-1) in the undisturbed stand than the disturbed stand (2.04 t ha-1). The biomass of smaller fine roots (<2 mm diameter) was 1.51 and 3.2 t ha-1 in the disturbed and undisturbed stands respectively. Most of the fine roots were present in the surface soil layer (0-15 cm), in both the disturbed and undisturbed stands (67% in the disturbed and 64% in the undisturbed). The nitrogen stock in the fine roots was more (38.61 kg ha-1) in undisturbed stand than the disturbed stand (16.93 kg ha-1). More nitrogen was confined in the fine roots of <2 mm diameter in both undisturbed (28.8 kg ha-1) and disturbed (13.59 kg ha-1) stands. DOI: http://dx.doi.org/10.3126/njbs.v2i0.7484 Nepalese Journal of Biosciences 2 : 10-16 (2012)


2021 ◽  
Author(s):  
Yin Wang ◽  
Jian-Ming Wang ◽  
Huan Yang ◽  
Guan-Jun Li ◽  
Chen Chen ◽  
...  

2013 ◽  
Vol 36 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yun-Ke LIU ◽  
Chuan FAN ◽  
Xian-Wei LI ◽  
Yin-Hua LING ◽  
Yi-Gui ZHOU ◽  
...  

2021 ◽  
Vol 130 ◽  
pp. 108031
Author(s):  
Wen Li ◽  
Yifei Shi ◽  
Dandan Zhu ◽  
Wenqian Wang ◽  
Haowei Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tina Unuk Nahberger ◽  
Gian Maria Niccolò Benucci ◽  
Hojka Kraigher ◽  
Tine Grebenc

AbstractSpecies of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


Sign in / Sign up

Export Citation Format

Share Document