scholarly journals Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tina Unuk Nahberger ◽  
Gian Maria Niccolò Benucci ◽  
Hojka Kraigher ◽  
Tine Grebenc

AbstractSpecies of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


1978 ◽  
Vol 8 (3) ◽  
pp. 265-279 ◽  
Author(s):  
J. P. Kimmins ◽  
B. C. Hawkes

The vertical distribution of fine-root biomass, its chemical content, and the vertical distribution of overstory root tips were measured in a mature white spruce – subalpine fir stand (Piceaglauca (Moench) Voss – Abieslasiocarpa (Hook.) Nutt.) growing on an infertile sandy soil near Prince George, British Columbia, during July and August, 1975. The study was part of a larger project which described the biomass and chemical content of the tree and minor vegetation. The objective of the project was to provide information on nutrient losses accompanying whole-tree logging and to estimate the possible consequences of such losses for future tree production. Questions concerning the magnitude of the soil nutrient capital available to the vegetation indicated the need for information on the exploitation of the soil by the roots. This paper reports the results of an investigation of the fine roots. Living fine roots (<6.4 mm) of overstory trees and understory plants were sampled separately from 11 soil pits to an average depth of 94 cm. Overstory fine-root biomass was estimated to be about 1870 kg/ha of which 67% was in the forest floor (LFH horizon) and the Ae horizon. The average combined depth of these two horizons was only 8.3 cm, but they contained 88% of the overstory root tips sampled. The 3.3-cm-thick forest floor alone contained half of the fine-root biomass and approximately 70% of the overstory root tips. Understory fine-root biomass was estimated to be about 7880 kg/ha of which 69% was in the forest floor and the Ae horizon. The concentrations of N, P, K, Ca, and Mg generally decreased with increasing depth, while Fe and Al exhibited the opposite pattern.The marked concentration of fine-root biomass and root tips in the forest floor is interpreted as reflecting the very low nutrient status of the mineral soil on the study site. The high value of fine-root biomass for understory vegetation results from the open structure of the stand and is thought to reflect the great importance of this vegetation in nutrient cycling on the study site. The biomass data, together with root chemical concentration data, are consistent with the hypothesis that the forest floor is the major source of several of the macronutrients for the vegetation on the site.


1983 ◽  
Vol 13 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Kristiina A. Vogt ◽  
Erin E. Moore ◽  
Daniel J. Vogt ◽  
Mark J. Redlin ◽  
Robert L. Edmonds

Live and dead conifer fine root (≤2 mm) and mycorrhizal root biomasses were determined in the forest floors of 16 stands of Douglas-fir (Pseudotsugamenziesii (Dougl.) Forbes) of low (IV) or high (II) productivity. The maximum biomass of both live conifer and mycorrhizal root biomass occurred at canopy closure in site II and IV stands. After crown closure this biomass decreased significantly in site II but not in site IV stands. During and following crown closure, site IV stands generally had a significantly higher live conifer root biomass than site II stands. Only in the 65- to 75- and 150- to 163-year age groupings of stands was a significantly higher live mycorrhizal root biomass measured in site IV than in site II stands. The proportion of dead to total conifer fine root biomass fluctuated from 13 to 56% in site II stands and from 26 to 76% in site IV stands. The percentage of total mycorrhizal roots that were dead fluctuated from 25 to 57% in site II stands and from 19 to 76% in site IV stands. Generally the highest percentage of live root tips infected by mycorrhizal fungi occurred in the 45- and 46-year-old site II stands and in the 33-, 49-, 67-, and 69-year-old site IV stands.


Trees ◽  
2009 ◽  
Vol 23 (5) ◽  
pp. 941-950 ◽  
Author(s):  
Catharina Meinen ◽  
Christoph Leuschner ◽  
Nicholas T. Ryan ◽  
Dietrich Hertel

2013 ◽  
Vol 36 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yun-Ke LIU ◽  
Chuan FAN ◽  
Xian-Wei LI ◽  
Yin-Hua LING ◽  
Yi-Gui ZHOU ◽  
...  

2021 ◽  
Vol 130 ◽  
pp. 108031
Author(s):  
Wen Li ◽  
Yifei Shi ◽  
Dandan Zhu ◽  
Wenqian Wang ◽  
Haowei Liu ◽  
...  

2003 ◽  
Vol 33 (5) ◽  
pp. 847-853 ◽  
Author(s):  
Sylvia E Welke ◽  
Graeme D Hope ◽  
Gary A Hunt

The effect of timber harvesting on the biomass, nutrient standing crop, and decomposition of fine roots (<2 mm) was studied in a high elevation, Engelmann spruce (Picea engelmannii Parry ex Engelm.) – subalpine fir (Abies lasiocarpa (Hook.) Nutt.) forest. Root dynamics were compared in openings of different sizes. The sequential core method was used to collect fine root samples over 4 years. Differences in fine root biomass between opening sizes were most significant for the active fine root portion and were most pronounced in the fall compared with the spring. Active fine root biomass was significantly lower in the 10-ha clearcuts (164 kg/ha) compared with control plots (275 kg/ha). Furthermore, active fine root biomass was often lower in the 1.0-ha opening than in the 0.1-ha and control plots. A similar trend was established for inactive fine root biomass, although this was not consistent over sampling years. Nutrient concentrations of K, but no other elements, were higher in control plots. Nutrient standing crops, however, followed trends observed in fine root biomass. In the 10-ha clearcuts, the largest changes in fine root biomass occurred at the edge of the opening. The findings suggest that small (<10 ha) cutblocks may maintain greater fine root longevity.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Juan Piñeiro ◽  
Raúl Ochoa-Hueso ◽  
Manuel Delgado-Baquerizo ◽  
Silvan Dobrick ◽  
Peter B. Reich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document