scholarly journals Planning of the open-pit working edge positions by the periods of mining within the constraint programming paradigm

2021 ◽  
Vol 12 (5-2021) ◽  
pp. 161-165
Author(s):  
Alexander A. Zuenko ◽  
◽  
Yurii A. Oleynik ◽  
Roman A. Makedonov ◽  
◽  
...  

The work is aimed at solving the three-dimensional problem of finding the open-pit working edge positions by the periods of mining, taking into account the a priori specified productivity for the mineral and overburden. The proposed method uses a block model of a pit, where for each block its coordinates, the content of minerals in it, and the conditional initial value of the block are known. Also, a discounting function is set - a change in the total value of a block, depending on the period of its mining. The task is to find the distribution of blocks over mining periods that maximizes the total value of the blocks. Combinatorial search acceleration is achieved by representing a number of technological constraints in the form of global constraints.

2020 ◽  
Vol 11 (8-2020) ◽  
pp. 67-83
Author(s):  
Yu.A. Oleynik ◽  
◽  
A.A. Zuenko ◽  

At the moment, constraint programming technology is a powerful tool for solving combinatorial search and combinatorial optimization problems. To use this technology, any task must be formulated as a task of satisfying constraints. The role of the concept of global constraints in modeling and solving applied problems within the framework of the constraint programming paradigm can hardly be overestimated. The procedures that implement the algorithms of filtering global constraints are the elementary “building blocks” from which the model of a specific applied problem is built. Algorithms for filtering global constraints, as a rule, are supported by the corresponding developed theories that allow organizing high-performance computing. The choice of a particular software library is primarily determined by the extent to which the set and method of implementing global constraints corresponds tothe level of modern research in this area. The main focus of this article is focused on an overview of global constraints that are implemented within the most popular constraint programming libraries: Choco, GeCode, JaCoP, MiniZinc.


2021 ◽  
pp. 0310057X2097665
Author(s):  
Natasha Abeysekera ◽  
Kirsty A Whitmore ◽  
Ashvini Abeysekera ◽  
George Pang ◽  
Kevin B Laupland

Although a wide range of medical applications for three-dimensional printing technology have been recognised, little has been described about its utility in critical care medicine. The aim of this review was to identify three-dimensional printing applications related to critical care practice. A scoping review of the literature was conducted via a systematic search of three databases. A priori specified themes included airway management, procedural support, and simulation and medical education. The search identified 1544 articles, of which 65 were included. Ranging across many applications, most were published since 2016 in non – critical care discipline-specific journals. Most studies related to the application of three-dimensional printed models of simulation and reported good fidelity; however, several studies reported that the models poorly represented human tissue characteristics. Randomised controlled trials found some models were equivalent to commercial airway-related skills trainers. Several studies relating to the use of three-dimensional printing model simulations for spinal and neuraxial procedures reported a high degree of realism, including ultrasonography applications three-dimensional printing technologies. This scoping review identified several novel applications for three-dimensional printing in critical care medicine. Three-dimensional printing technologies have been under-utilised in critical care and provide opportunities for future research.


2019 ◽  
Vol 968 ◽  
pp. 496-510
Author(s):  
Anatoly Grigorievich Zelensky

Classical and non-classical refined theories of plates and shells, based on various hypotheses [1-7], for a wide class of boundary problems, can not describe with sufficient accuracy the SSS of plates and shells. These are boundary problems in which the plates and shells undergo local and burst loads, have openings, sharp changes in mechanical and geometric parameters (MGP). The problem also applies to such elements of constructions that have a considerable thickness or large gradient of SSS variations. The above theories in such cases yield results that can differ significantly from those obtained in a three-dimensional formulation. According to the logic in such theories, the accuracy of solving boundary problems is limited by accepted hypotheses and it is impossible to improve the accuracy in principle. SSS components are usually depicted in the form of a small number of members. The systems of differential equations (DE) obtained here have basically a low order. On the other hand, the solution of boundary value problems for non-thin elastic plates and shells in a three-dimensional formulation [8] is associated with great mathematical difficulties. Only in limited cases, the three-dimensional problem of the theory of elasticity for plates and shells provides an opportunity to find an analytical solution. The complexity of the solution in the exact three-dimensional formulation is greatly enhanced if complex boundary conditions or physically nonlinear problems are considered. Theories in which hypotheses are not used, and SSS components are depicted in the form of infinite series in transverse coordinates, will be called mathematical. The approximation of the SSS component can be adopted in the form of various lines [9-16], and the construction of a three-dimensional problem to two-dimensional can be accomplished by various methods: projective [9, 14, 16], variational [12, 13, 15, 17]. The effectiveness and accuracy of one or another variant of mathematical theory (MT) depends on the complex methodology for obtaining the basic equations.


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


Sign in / Sign up

Export Citation Format

Share Document