scholarly journals Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

2015 ◽  
Vol 6 ◽  
pp. 1508-1517 ◽  
Author(s):  
Aleksandra Szkudlarek ◽  
Alfredo Rodrigues Vaz ◽  
Yucheng Zhang ◽  
Andrzej Rudkowski ◽  
Czesław Kapusta ◽  
...  

In this paper we study in detail the post-growth annealing of a copper-containing material deposited with focused electron beam induced deposition (FEBID). The organometallic precursor Cu(II)(hfac)2 was used for deposition and the results were compared to that of compared to earlier experiments with (hfac)Cu(I)(VTMS) and (hfac)Cu(I)(DMB). Transmission electron microscopy revealed the deposition of amorphous material from Cu(II)(hfac)2. In contrast, as-deposited material from (hfac)Cu(I)(VTMS) and (hfac)Cu(I)(DMB) was nano-composite with Cu nanocrystals dispersed in a carbonaceous matrix. After annealing at around 150–200 °C all deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit due to the migration of Cu atoms from the carbonaceous matrix containing the elements carbon, oxygen, and fluorine. Post-irradiation of deposits with 200 keV electrons in a transmission electron microscope favored the formation of Cu nanocrystals within the carbonaceous matrix of freestanding rods and suppressed the formation on their surface. Electrical four-point measurements on FEBID lines from Cu(hfac)2 showed five orders of magnitude improvement in conductivity when being annealed conventionally and by laser-induced heating in the scanning electron microscope chamber.

Author(s):  
Raynald Gauvin ◽  
Dominique Drouin ◽  
Pierre Hovington

In modern materials science, it is important to improve the resolution of the Scanning Electron Microscope (SEM) because small phases play a crutial role in the properties of materials. The Transmission Electron Microscope (TEM) is the tool of choice for imaging small phases embedded in a given matrix. However, this technique is expensive and also is slow owing to specimen preparation. In this context, it is important to improve spatial resolution of the SEM.In electron backscattering images, it is well know that the backscattered electrons have an energetic distribution when they escape the specimen.The electrons having loss less energy are those which have travelled less in the specimen and thus escape closer to the electron beam. So, in filtering the energy of the backscattering electron and keeping those which have loss only a small amount of energy to create the image, a significant improvement of the resolution of such images is expected. New detectors are now under development to take advantage of this technique of imaging.


Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16349-16356 ◽  
Author(s):  
Brett B. Lewis ◽  
Brittnee A. Mound ◽  
Bernadeta Srijanto ◽  
Jason D. Fowlkes ◽  
George M. Pharr ◽  
...  

Nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.


2011 ◽  
Vol 291-294 ◽  
pp. 228-232
Author(s):  
Ji Qun Zhang ◽  
Hui Ming Jin ◽  
Ji Cheng Gao ◽  
Jun Shi ◽  
Lu Li

A Ni-SiC nano-composite plating coating was prepared by using composite plating technology adding nano-SiC in the bath.Then the surface morphology was examined by scanning electron microscope (SEM), the transmission electron microscope (TEM) was used to study the grain size,the porosity, corrode-resistant, combines intensity and wearability of the composite plating coating were also tested and contrasted the result with the pure nickel coating. The results shows the surface of Ni-SiC composite coating are more uniform and compact for the adding of nano-Sic refined the grain, the wear resistance,microhardness and corrosion resistance of the composite coating are also significantly improved.


Sign in / Sign up

Export Citation Format

Share Document