scholarly journals Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

2018 ◽  
Vol 9 ◽  
pp. 1135-1145 ◽  
Author(s):  
Hana Krýsová ◽  
Josef Krýsa ◽  
Ladislav Kavan

For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20–200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO2 films. The blocking properties of the as-deposited TiO2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells.

2020 ◽  
Vol 124 (15) ◽  
pp. 8129-8139 ◽  
Author(s):  
Zengqi Huang ◽  
Xiaotian Hu ◽  
Zhi Xing ◽  
Xiangchuan Meng ◽  
Xiaopeng Duan ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14534-14541
Author(s):  
M. S. Chowdhury ◽  
Kazi Sajedur Rahman ◽  
Vidhya Selvanathan ◽  
A. K. Mahmud Hasan ◽  
M. S. Jamal ◽  
...  

Organic–inorganic perovskite solar cells (PSCs) have recently emerged as a potential candidate for large-scale and low-cost photovoltaic devices.


2021 ◽  
Author(s):  
T Sumathi ◽  
Sonia A Fredricka ◽  
G Deepa

Abstract In the last two decades, dye sensitized solar cells (DSSCs) have gotten a lot of attention from researchers and have progressed quickly. To promote commercialization and large-scale application of DSSCs, their efficiency should be increased. This paper details significant advancements in advanced NiMoS3/BC nanocomposites for improving photoanodes and DSSC conversion efficiencies. The fabricated electrode samples were characterized by XRD, SEM, TEM, Raman, UV, PL and BET to explore the structural, morphological and optical properties. A significant reduction band gap with enhanced light absorption and rapid prevention of electron hole pair was explored by UV-DRS and PL studies. The photocurrent density-voltage (J-V) and IPCE characteristics were analyzed for assembled solar cell. The NiMoS3/BC (NMSC5) nanocomposite DSSC showed a PCE of 8.85%, far higher than that of the NiMoS3 (2.45%) and a PCE value equivalent to Pt CE (4.79 %). The enhanced PCE of the proposed electrodes are also discussed in scientifically.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Braden Bills ◽  
Mariyappan Shanmugam ◽  
Mahdi Farrokh Baroughi ◽  
David Galipeau

AbstractThe performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.


2019 ◽  
Vol 9 (5) ◽  
pp. 1249-1257 ◽  
Author(s):  
Tobias Abzieher ◽  
Jonas A. Schwenzer ◽  
Somayeh Moghadamzadeh ◽  
Florian Sutterluti ◽  
Ihteaz M. Hossain ◽  
...  

2019 ◽  
Vol 21 (4) ◽  
pp. 1801196 ◽  
Author(s):  
Alexander Möllmann ◽  
Dawit Gedamu ◽  
Paola Vivo ◽  
Robert Frohnhoven ◽  
Daniel Stadler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document