scholarly journals An efficient synthesis of a C12-higher sugar aminoalditol

2017 ◽  
Vol 13 ◽  
pp. 2146-2152 ◽  
Author(s):  
Łukasz Szyszka ◽  
Anna Osuch-Kwiatkowska ◽  
Mykhaylo A Potopnyk ◽  
Sławomir Jarosz

The C12-aminoalditol H2NCH2–(CHOBn)10–CH2OH was prepared from two simple monosaccharide building blocks. The synthesis was realized by a regioselective introduction of the azide group and subsequent protection–deprotection transformations. The chemical reactivity of the aminoalditol was tested in the reductive amination reaction with a selectively protected sucrose monoaldehyde.

2009 ◽  
Vol 7 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Ioana Sisu ◽  
Valentina Udrescu ◽  
Corina Flangea ◽  
Sorin Tudor ◽  
Nicolae Dinca ◽  
...  

AbstractA variety of carbohydrates, in particular polysaccharides can be subjected to chemical modification to obtain derivatives with amphiphilic properties, which enable biochemical or biological reactions at the polymer surface. In the present work, a polydisperse maltodextrin mixture of average molecular weight 3000 was coupled with 1,6-hexamethylenediamine (HMD) via reductive amination reaction. Resulting products were characterized by thermal analysis and positive nanoelectrospray quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Both thermal analysis and MS screening confirmed the formation of the HMD-polysaccharide coupling products. Moreover, HMD-linked polysaccharide chains containing 2 to 26 glucose building blocks were identified by nanoESI Q-TOF MS. MS/MS fragmentation using collision-induced dissociation (CID) at low ion acceleration energies provided strong evidence for HMD-maltodextrin linkage formation and the set of sequence ions diagnostic for the composition and structure of a HMD-linked chain containing 18 glucose residues.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


2015 ◽  
Vol 03 (01n02) ◽  
pp. 1540004 ◽  
Author(s):  
Xialu Wu ◽  
David J. Young ◽  
T. S. Andy Hor

As molecular synthesis advances, we are beginning to learn control of not only the chemical reactivity (and function) of molecules, but also of their interactions with other molecules. It is this basic idea that has led to the current explosion of supramolecular science and engineering. Parallel to this development, chemists have been actively pursuing the design of very large molecules using basic molecular building blocks. Herein, we review the general development of supramolecular chemistry and particularly of two new branches: supramolecular coordination complexes (SCCs) and metal organic frameworks (MOFs). These two fields are discussed in detail with typical examples to illustrate what is now possible and what challenges lie ahead for tomorrow's molecular artisans.


Author(s):  
Dominka Fedorowicz ◽  
Sylwia Banach ◽  
Patrycja Koza ◽  
Rafał Frydrych ◽  
Katarzyna Ślepokura ◽  
...  

A few suitably long dialdehyde and primary diamine building blocks of a predetermined chirality have been designed and synthesized to enable controlled and efficient synthesis of all 6 possible diastereomers...


2022 ◽  
Author(s):  
Zhi-Gang Yin ◽  
Xiong-Wei Liu ◽  
Hui-Juan Wang ◽  
Min Zhang ◽  
Xiong-Li Liu ◽  
...  

A highly efficient synthesis of structurally diverse ortho-acylphenol–diindolylmethane hybrids 3 using carboxylic acid-activated chromones as versatile synthetic building blocks is reported here for the first time, through 1,4-nucleophilic addition and followed by a decarboxylation and pyrone ring opening reaction process.


RSC Advances ◽  
2018 ◽  
Vol 8 (64) ◽  
pp. 36662-36674 ◽  
Author(s):  
Esra Boz ◽  
Nurcan Ş. Tüzün ◽  
Matthias Stein

Green production of tertiary amine from sustainable sources can be controlled by appropriate choice of reaction parameters identified by computational means.


2020 ◽  
Author(s):  
Skander Abboud ◽  
Vincent AUCAGNE

An in-depth study of the Fmoc-based solid phase peptide synthesis of N-Hnb-Cys crypto-thioester peptides, advantageous building blocks for the native chemical ligation-based synthesis of proteins, led to the identification of epimerized and imidazolidinone side products formed during a key reductive amination step. The understanding of the underlying reaction mechanisms was crucial for the developement of an automatable optimized synthetic protocol.


Sign in / Sign up

Export Citation Format

Share Document