scholarly journals Nsp1 of SARS-CoV-2 Stimulates Host Translation Termination

2020 ◽  
Author(s):  
Alexey Shuvalov ◽  
Ekaterina Shuvalova ◽  
Nikita Biziaev ◽  
Elizaveta Sokolova ◽  
Konstantin Evmenov ◽  
...  

ABSTRACTThe Nsp1 protein of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of SARS-CoV-2 Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1 and the eRF1 and ABCE1 proteins. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex simultaneously with eRF1, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates translation termination in the stop codon recognition stage at all three stop codons. This stimulation targets the release factor 1 (eRF1) and does not affect the release factor 3 (eRF3). The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and removal them from the pool of the active ribosomes.

2006 ◽  
Vol 5 (8) ◽  
pp. 1378-1387 ◽  
Author(s):  
Adam K. Kallmeyer ◽  
Kim M. Keeling ◽  
David M. Bedwell

ABSTRACT Protein synthesis requires a large commitment of cellular resources and is highly regulated. Previous studies have shown that a number of factors that mediate the initiation and elongation steps of translation are regulated by phosphorylation. In this report, we show that a factor involved in the termination step of protein synthesis is also subject to phosphorylation. Our results indicate that eukaryotic release factor 1 (eRF1) is phosphorylated in vivo at serine 421 and serine 432 by the CK2 protein kinase (previously casein kinase II) in the budding yeast Saccharomyces cerevisiae. Phosphorylation of eRF1 has little effect on the efficiency of stop codon recognition or nonsense-mediated mRNA decay. Also, phosphorylation is not required for eRF1 binding to the other translation termination factor, eRF3. In addition, we provide evidence that the putative phosphatase Sal6p does not dephosphorylate eRF1 and that the state of eRF1 phosphorylation does not influence the allosuppressor phenotype associated with a sal6Δ mutation. Finally, we show that phosphorylation of eRF1 is a dynamic process that is dependent upon carbon source availability. Since many other proteins involved in protein synthesis have a CK2 protein kinase motif near their extreme C termini, we propose that this represents a common regulatory mechanism that is shared by factors involved in all three stages of protein synthesis.


2016 ◽  
Vol 44 (16) ◽  
pp. 7766-7776 ◽  
Author(s):  
Alexandr Ivanov ◽  
Tatyana Mikhailova ◽  
Boris Eliseev ◽  
Lahari Yeramala ◽  
Elizaveta Sokolova ◽  
...  

2013 ◽  
Vol 91 (3) ◽  
pp. 155-164 ◽  
Author(s):  
Lijun Xu ◽  
Yanrong Hao ◽  
Cui Li ◽  
Quan Shen ◽  
Baofeng Chai ◽  
...  

One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 1113-1122 ◽  
Author(s):  
Yoshikazu Nakamura ◽  
Koichi Ito ◽  
Kiyoyuki Matsumura ◽  
Yoichi Kawazu ◽  
Kanae Ebihara

Translation termination requires codon-dependent polypeptide release factors. The mechanism of stop codon recognition by release factors is unknown and holds considerable interest since it entails protein–RNA recognition rather than the well-understood mRNA–tRNA interaction in codon–anticodon pairing. Bacteria have two codon-specific release factors and our picture of prokaryotic translation is changing because a third factor, which stimulates the other two, has now been found. Moreover, a highly conserved eukaryotic protein family possessing properties of polypeptide release factor has now been sought. This review summarizes our current understanding of the structural and functional organization of release factors as well as our recent findings of highly conserved structural motifs in bacterial and eukaryotic polypeptide release factors.Key words: translation termination, stop codon recognition, peptide chain release factors, seven-domain model.


2017 ◽  
Author(s):  
Egor Svidritskiy ◽  
Andrei A. Korostelev

AbstractTranslation termination ensures proper lengths of cellular proteins. During termination, release factor (RF) recognizes a stop codon and catalyzes peptide release. Conformational changes in RF are thought to underlie accurate translation termination. If true, the release factor should bind the A-site codon in inactive (compact) conformation(s), but structural studies of ribosome termination complexes have only captured RFs in an extended, active conformation. Here, we identify a hyper-accurate RF1 variant, and present crystal structures of 70S termination complexes that suggest a structural pathway for RF1 activation. In the presence of blasticidin S, the catalytic domain of RF1 is removed from the peptidyl-transferase center, whereas the codon-recognition domain is fully engaged in stop-codon recognition in the decoding center. RF1 codon recognition induces decoding-center rearrangements that precede accommodation of the catalytic domain. Our findings suggest how structural dynamics of RF1 and the ribosome coordinate stop-codon recognition with peptide release, ensuring accurate translation termination.


1993 ◽  
Vol 13 (6) ◽  
pp. 3340-3349 ◽  
Author(s):  
X Danthinne ◽  
J Seurinck ◽  
F Meulewaeter ◽  
M Van Montagu ◽  
M Cornelissen

The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.


Author(s):  
Shijie Ye ◽  
Allison Ann Berger ◽  
Dominique Petzold ◽  
Oliver Reimann ◽  
Benjamin Matt ◽  
...  

This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 911 ◽  
Author(s):  
Kseniya A. Lashkevich ◽  
Valeriya I. Shlyk ◽  
Artem S. Kushchenko ◽  
Vadim N. Gladyshev ◽  
Elena Z. Alkalaeva ◽  
...  

Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3′ UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a “leaky” stop codon context, which likely defines the basis of nonsense suppression.


Sign in / Sign up

Export Citation Format

Share Document