On the Relationship Between Musicianship and Contralateral Suppression of Transient-Evoked Otoacoustic Emissions

2016 ◽  
Vol 27 (04) ◽  
pp. 333-344 ◽  
Author(s):  
Andrew Stuart ◽  
Emma R. Daughtrey

Background: The medial olivocochlear (MOC) efferent reflex that modulates outer hair cell function has been shown to be more robust in musicians versus nonmusicians as evidenced in greater contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs). All previous research comparing musical ability and MOC efferent strength has defined musicianship dichotomously (i.e., high-level music students or professional classical musicians versus nonmusicians). Purpose: The objective of the study was to further explore contralateral suppression of TEOAEs among adults with a full spectrum of musicianship ranging from no history of musicianship to professional musicians. Musicianship was defined by both self-report and with an objective test to quantify individual differences in perceptual music skills. Research Design: A single-factor between-subjects and correlational research designs were employed. Study Sample: Forty-five normal-hearing young adults participated. Data Collection and Analysis: Participants completed a questionnaire concerning their music experience and completed the Brief Profile of Music Perception Skills (PROMS) to quantify perceptual musical skills across multiple musical domains (i.e., accent, melody, tempo, and tuning). TEOAEs were evaluated with 60 dB peak equivalent sound pressure level click stimuli with and without a contralateral 65 dB sound pressure level white noise suppressor. TEOAE suppression was expressed in two ways, absolute TEOAE suppression in dB and a normalized index of TEOAE suppression (i.e., percentage of suppression). Results: Participants who considered themselves musicians scored significantly higher on all subscales and total Brief PROMS score (p < 0.05). There was no statistically significant difference between musicians and nonmusicians in absolute TEOAE suppression or percentage of TEOAE suppression (p > 0.05). There were no statistically significant correlations or linear predictive relationships between subscale or total Brief PROMS scores with absolute and percentage of TEOAE suppression (p > 0.05). Conclusions: The findings do not support the notion of a graded enhancement of MOC efferent suppression among adults with varied degrees of musicianship from nonmusicians to professional musicians.

1965 ◽  
Vol 8 (2) ◽  
pp. 137-148 ◽  
Author(s):  
David P. Goldstein ◽  
Claude S. Hayes

This experiment tested the hypothesis that the occlusion effect is accompanied by an increase in sound pressure level in the external auditory canal. Pure tone bone conduction thresholds and sound pressure levels were measured, first with the ear canal open, then with the ear canal closed, at two positions of the bone vibrator and at five frequencies in 28 normal listeners. Statistical analyses revealed a significant difference between measures at 250, 500, and 1 000 cps but not at 2 000 and 4 000 cps. Average sound pressure level shifts tended to be larger than their threshold measure counterparts. The two measures, nevertheless, yielded positive correlations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriana Duarte Rocha ◽  
Patricia Miranda Sá ◽  
Danielle Bonotto Cabral Reis ◽  
Ana Carolina Carioca Costa

ResumoIntrodução: Estudos mostram que o ambiente muito estimulante, com altos níveis sonoros, interfere negativamente no desenvolvimento e crescimento de recém-nascidos. Objetivo: verificar se o "horário do soninho" é capaz de reduzir os níveis de pressão sonora em uma unidade de cuidados neonatais. Método: Trata-se de uma pesquisa transversal. A medida do nível de pressão sonora foi realizada durante 15 dias não consecutivos, com tempo de avaliação de 30 minutos antes, 1 hora durante e 30 minutos após o "horário do soninho" Resultado: Observamos uma redução dos níveis de pressão sonora durante o "horário do soninho" (p = 0,00). Essa redução permaneceu no período dos 30 minutos subsequentes, com diferença estatisticamente significante quando comparada ao período antes do "horário do soninho" (p = 0,00). Conclusão: O "horário do soninho" é uma ferramenta capaz de reduzir o nível de pressão sonora em uma unidade de terapia intensiva neonatalPalavras-Chave: ruído; Terapia Intensiva neonatal; Recém-nascido AbstractBackground: Studies show that super stimulating environment, with high sound levels, that negatively interfere in the development and growthof newborns. Aim:  Verify if the "quiet time" is able to reduce the sound pressure levels in a neonatal care unit. Method: It is a cross-sectional research. The measurement of the sound pressure level was performed during 15 non-consecutive days with an evaluation time of 30 minutes before, 1 hour during and 30 minutes after the "quiet time" Result: We observed a reduction of the sound pressure levels during the hours of quiet time (p = 0.00). This reduction remained in the period of the subsequent 30 minutes, with a statistically significant difference when compared to the period before sleep time (p = 0.00). Conclusion: The “quiet time is a tool capable of reducing sound pressure level in a neonatal intensive care unitKey Words: noise; Intensive Care, neonatal; Infant, newborn Resumen"Tiempo de silencio": una herramienta para reducir los niveles de presión acústica en una unidad de cuidados intensivos neonatalesAntecedentes: los estudios muestran que el entorno súper estimulante, con altos niveles de sonido, interfiere negativamente en el desarrollo y crecimiento de los recién nacidos. Objetivo: Verificar si el "tiempo de silencio" puede reducir los niveles de presión acústica en una unidad de cuidados neonatales. Método: es una investigación transversal. La medición del nivel de presión sonora se realizó durante 15 días no consecutivos con un tiempo de evaluación de 30 minutos antes, 1 hora durante y 30 minutos después del "tiempo de silencio" Resultado: Observamos una reducción de los niveles de presión sonora durante las horas de tiempo de silencio (p = 0.00). Esta reducción se mantuvo en el período de los siguientes 30 minutos, con una diferencia estadísticamente significativa en comparación con el período anterior al tiempo de sueño (p = 0,00). Conclusión: el “tiempo de silencio es una herramienta capaz de reducir el nivel de presión acústica en una unidad de cuidados intensivos neonatales Palabras clave: ruido; Cuidados Intensivos, neonatales; Infante, recién nacido


2020 ◽  
Vol 63 (4) ◽  
pp. 931-947
Author(s):  
Teresa L. D. Hardy ◽  
Carol A. Boliek ◽  
Daniel Aalto ◽  
Justin Lewicke ◽  
Kristopher Wells ◽  
...  

Purpose The purpose of this study was twofold: (a) to identify a set of communication-based predictors (including both acoustic and gestural variables) of masculinity–femininity ratings and (b) to explore differences in ratings between audio and audiovisual presentation modes for transgender and cisgender communicators. Method The voices and gestures of a group of cisgender men and women ( n = 10 of each) and transgender women ( n = 20) communicators were recorded while they recounted the story of a cartoon using acoustic and motion capture recording systems. A total of 17 acoustic and gestural variables were measured from these recordings. A group of observers ( n = 20) rated each communicator's masculinity–femininity based on 30- to 45-s samples of the cartoon description presented in three modes: audio, visual, and audio visual. Visual and audiovisual stimuli contained point light displays standardized for size. Ratings were made using a direct magnitude estimation scale without modulus. Communication-based predictors of masculinity–femininity ratings were identified using multiple regression, and analysis of variance was used to determine the effect of presentation mode on perceptual ratings. Results Fundamental frequency, average vowel formant, and sound pressure level were identified as significant predictors of masculinity–femininity ratings for these communicators. Communicators were rated significantly more feminine in the audio than the audiovisual mode and unreliably in the visual-only mode. Conclusions Both study purposes were met. Results support continued emphasis on fundamental frequency and vocal tract resonance in voice and communication modification training with transgender individuals and provide evidence for the potential benefit of modifying sound pressure level, especially when a masculine presentation is desired.


2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


Sign in / Sign up

Export Citation Format

Share Document