Benefits in Speech Recognition in Noise with Remote Wireless Microphones in Group Settings

Author(s):  
Linda M. Thibodeau

Background: Although hearing aids (HAs) and cochlear implants (CIs) can provide significant benefits topersons with hearing loss, users frequently report difficulty hearing in noisy environments, particularlywhen there are multiple talkers. Little is known about the benefits provided by currently available wirelessmicrophones in multitalker situations.<br />Purpose: The purpose of this study was to compare the benefits received in speech recognition in noiseby adults with hearing loss when using two different wireless microphone types in a simulated groupsetting.<br />Research Design: A quasi-experimental, repeated-measures design was used where performance in acontrol condition, HA/CI alone, was compared with performance in two wireless microphone interventionconditions.<br />Study Sample: Participants included ten listeners, aged 20–92 years, with bilateral sensorineural hearingloss who were experienced HA or CI users.<br />Intervention: The two wireless microphones by Phonak, Roger Pen, and Roger Select used the samedigital modulation protocol to transmit the signal to compatible receivers. However, the Roger Pen operatedin a fixed omnidirectional mode, whereas the Roger Select operated in an adaptive directionalmode.<br />Data Collection and Analysis: Participants were asked to repeat Hearing in Noise Test sentences presentedin restaurant noise in three conditions: HA/CI alone, HA/CI with a Roger Pen, or HA/CI with aRoger Select microphone placed in the center of a round table. Sentences were presented from oneof five loudspeakers equally spaced with the participant, while restaurant noise was presented on eachside at four signal-to-noise ratios (SNRs), including +5, 0, -5, and -10 dB. A two-way, repeated-measuresanalysis of variance was performed with main effects of listening condition and noise level.<br />Results: Significantly greater speech recognition performance was achieved with the wireless microphonesthan with listening with just the HA or CI. Furthermore, at the -5 and -10 dB SNR conditions,the Roger Select resulted in significantly better performance than the Roger Pen microphone.<br />Conclusions: The results suggest that the Roger Select microphone can provide significant benefits inspeech recognition in noise over the use of HA/CI alone (61 percent) and also significant benefits over the useof a Roger Pen (16 percent) in a simulated group-dining experience.<br />


2020 ◽  
Vol 31 (06) ◽  
pp. 404-411 ◽  
Author(s):  
Linda M. Thibodeau

Abstract Background Although hearing aids (HAs) and cochlear implants (CIs) can provide significant benefits to persons with hearing loss, users frequently report difficulty hearing in noisy environments, particularly when there are multiple talkers. Little is known about the benefits provided by currently available wireless microphones in multitalker situations. Purpose The purpose of this study was to compare the benefits received in speech recognition in noise by adults with hearing loss when using two different wireless microphone types in a simulated group setting. Research Design A quasi-experimental, repeated-measures design was used where performance in a control condition, HA/CI alone, was compared with performance in two wireless microphone intervention conditions. Study Sample Participants included ten listeners, aged 20-92 years, with bilateral sensorineural hearing loss who were experienced HA or CI users. Intervention The two wireless microphones by Phonak, Roger Pen, and Roger Select used the same digital modulation protocol to transmit the signal to compatible receivers. However, the Roger Pen operated in a fixed omnidirectional mode, whereas the Roger Select operated in an adaptive directional mode. Data Collection and Analysis Participants were asked to repeat Hearing in Noise Test sentences presented in restaurant noise in three conditions: HA/CI alone, HA/CI with a Roger Pen, or HA/CI with a Roger Select microphone placed in the center of a round table. Sentences were presented from one of five loudspeakers equally spaced with the participant, while restaurant noise was presented on each side at four signal-to-noise ratios (SNRs), including +5, 0, −5, and −10 dB. A two-way, repeated-measures analysis of variance was performed with main effects of listening condition and noise level. Results Significantly  greater speech recognition performance was achieved with the wireless microphones than with listening with just the HA or CI. Furthermore, at the −5- and −10-dB SNR conditions, the Roger Select resulted in significantly better performance than the Roger Pen microphone. Conclusions The results suggest that the Roger Select microphone can provide significant benefits in speech recognition in noise over the use of HA/CI alone (61%) and also significant benefits over the use of a Roger Pen (16%) in a simulated group dining experience.



2010 ◽  
Vol 21 (08) ◽  
pp. 546-557 ◽  
Author(s):  
Kristi Oeding ◽  
Michael Valente ◽  
Jessica Kerckhoff

Background: Patients with unilateral sensorineural hearing loss (USNHL) experience great difficulty listening to speech in noisy environments. A directional microphone (DM) could potentially improve speech recognition in this difficult listening environment. It is well known that DMs in behind-the-ear (BTE) and custom hearing aids can provide a greater signal-to-noise ratio (SNR) in comparison to an omnidirectional microphone (OM) to improve speech recognition in noise for persons with hearing impairment. Studies examining the DM in bone anchored auditory osseointegrated implants (Baha), however, have been mixed, with little to no benefit reported for the DM compared to an OM. Purpose: The primary purpose of this study was to determine if there are statistically significant differences in the mean reception threshold for sentences (RTS in dB) in noise between the OM and DM in the Baha® Divino™. The RTS of these two microphone modes was measured utilizing two loudspeaker arrays (speech from 0° and noise from 180° or a diffuse eight-loudspeaker array) and with the better ear open or closed with an earmold impression and noise attenuating earmuff. Subjective benefit was assessed using the Abbreviated Profile of Hearing Aid Benefit (APHAB) to compare unaided and aided (Divino OM and DM combined) problem scores. Research Design: A repeated measures design was utilized, with each subject counterbalanced to each of the eight treatment levels for three independent variables: (1) microphone (OM and DM), (2) loudspeaker array (180° and diffuse), and (3) better ear (open and closed). Study Sample: Sixteen subjects with USNHL currently utilizing the Baha were recruited from Washington University's Center for Advanced Medicine and the surrounding area. Data Collection and Analysis: Subjects were tested at the initial visit if they entered the study wearing the Divino or after at least four weeks of acclimatization to a loaner Divino. The RTS was determined utilizing Hearing in Noise Test (HINT) sentences in the R-Space™ system, and subjective benefit was determined utilizing the APHAB. A three-way repeated measures analysis of variance (ANOVA) and a paired samples t-test were utilized to analyze results of the HINT and APHAB, respectively. Results: Results revealed statistically significant differences within microphone (p < 0.001; directional advantage of 3.2 dB), loudspeaker array (p = 0.046; 180° advantage of 1.1 dB), and better ear conditions (p < 0.001; open ear advantage of 4.9 dB). Results from the APHAB revealed statistically and clinically significant benefit for the Divino relative to unaided on the subscales of Ease of Communication (EC) (p = 0.037), Background Noise (BN) (p < 0.001), and Reverberation (RV) (p = 0.005). Conclusions: The Divino's DM provides a statistically significant improvement in speech recognition in noise compared to the OM for subjects with USNHL. Therefore, it is recommended that audiologists consider selecting a Baha with a DM to provide improved speech recognition performance in noisy listening environments.



2015 ◽  
Vol 26 (01) ◽  
pp. 093-100 ◽  
Author(s):  
Jace Wolfe ◽  
Erin Schafer ◽  
Emily Mills ◽  
Andrew John ◽  
Mary Hudson ◽  
...  

Background: There is a paucity of published studies examining how children with hearing loss understand speech over the telephone. Previous studies on adults with hearing aids have suggested that adults with bilateral hearing aids experience significant difficulty recognizing speech on the telephone when listening with one ear, but the provision of telephone input to both ears substantially improved speech understanding. Purpose: The objectives of this study were to measure speech recognition in quiet and in noise for a group of older children with hearing loss over the telephone and to evaluate the effects of binaural hearing (e.g., DuoPhone) on speech recognition over the telephone. Research Design: A cross-sectional, repeated-measures design was used in this study. Study Sample: A total of 14 children, ages 6–14 yr, participated in the study. Participants were obtained using convenience sampling from a nonprofit clinic population. Intervention: Speech recognition in quiet and in noise with binaural versus monaural telephone input was compared in pediatric participants. Data Collection and Analysis: Monosyllabic word recognition was assessed in quiet and classroom noise set at 50 dBA in conditions with monaural and binaural (DuoPhone) telephone input. Results: The children’s speech recognition in quiet and in noise was significantly better with binaural telephone input relative to monaural telephone input. Conclusions: To obtain optimal performance on the telephone, the following considerations may apply: (1) use of amplification with binaural streaming capabilities (e.g., DuoPhone), (2) counseling of family and children on how to best use the telephone, (3) provision of telecoil with microphone attenuation for improved signal-to-noise ratio, and (4) use of probe tube measures to verify the appropriateness of the telephone programs.



2015 ◽  
Vol 26 (08) ◽  
pp. 724-731 ◽  
Author(s):  
Krishna S. Rodemerk ◽  
Jason A. Galster

Background: Many studies have reported the speech recognition benefits of a personal remote microphone system when used by adult listeners with hearing loss. The advance of wireless technology has allowed for many wireless audio transmission protocols. Some of these protocols interface with commercially available hearing aids. As a result, commercial remote microphone systems use a variety of different protocols for wireless audio transmission. It is not known how these systems compare, with regard to adult speech recognition in noise. Purpose: The primary goal of this investigation was to determine the speech recognition benefits of four different commercially available remote microphone systems, each with a different wireless audio transmission protocol. Research Design: A repeated-measures design was used in this study. Study Sample: Sixteen adults, ages 52 to 81 yr, with mild to severe sensorineural hearing loss participated in this study. Intervention: Participants were fit with three different sets of bilateral hearing aids and four commercially available remote microphone systems (FM, 900 MHz, 2.4 GHz, and Bluetooth® paired with near-field magnetic induction). Data Collection and Analysis: Speech recognition scores were measured by an adaptive version of the Hearing in Noise Test (HINT). The participants were seated both 6 and 12′ away from the talker loudspeaker. Participants repeated HINT sentences with and without hearing aids and with four commercially available remote microphone systems in both seated positions with and without contributions from the hearing aid or environmental microphone (24 total conditions). The HINT SNR-50, or the signal-to-noise ratio required for correct repetition of 50% of the sentences, was recorded for all conditions. A one-way repeated measures analysis of variance was used to determine statistical significance of microphone condition. Results: The results of this study revealed that use of the remote microphone systems statistically improved speech recognition in noise relative to unaided and hearing aid-only conditions across all four wireless transmission protocols at 6 and 12′ away from the talker. Conclusions: Participants showed a significant improvement in speech recognition in noise when comparing four remote microphone systems with different wireless transmission methods to hearing aids alone.



2013 ◽  
Vol 24 (10) ◽  
pp. 927-940 ◽  
Author(s):  
Erin C. Schafer ◽  
Denise Romine ◽  
Elizabeth Musgrave ◽  
Sadaf Momin ◽  
Christy Huynh

Background: Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. Purpose: The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. Research Design: A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Study Sample: Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. Data Collection and Analysis: In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. Results: The results in Experiment 1 suggested that both FM receivers provided significantly better speech-recognition performance in noise than the CI alone; however, the electromagnetically coupled receiver provided significantly better speech-recognition performance in noise and better ratings in some situations than the electrically coupled receiver when set to the same gain. In Experiment 2, the primary analysis suggested significantly better speech-recognition performance in noise for the neck-loop versus electrically coupled receiver, but a second analysis, using the best performance across gain settings for each device, revealed no significant differences between the two FM receivers. Experiment 3 revealed monitor-earphone output differences in the Nucleus 5 sound processor for the two FM receivers when set to the +8 setting used in Experiment 1 but equal output when the electrically coupled device was set to a +16 gain setting and the electromagnetically coupled device was set to the +8 gain setting. Conclusions: Individuals with contemporary sound processors may show more favorable speech-recognition performance in noise electromagnetically coupled FM systems (i.e., Oticon Arc), which is most likely related to the input processing and signal processing pathway within the CI sound processor for direct input versus telecoil input. Further research is warranted to replicate these findings with a larger sample size and to develop and validate a more objective approach to fitting FM systems to CI sound processors.



2003 ◽  
Vol 12 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Paula Henry ◽  
Todd Ricketts

Improving the signal-to-noise ratio (SNR) for individuals with hearing loss who are listening to speech in noise provides an obvious benefit. Although binaural hearing provides the greatest advantage over monaural hearing in noise, some individuals with symmetrical hearing loss choose to wear only one hearing aid. The present study tested the hypothesis that individuals with symmetrical hearing loss fit with one hearing aid would demonstrate improved speech recognition in background noise with increases in head turn. Fourteen individuals were fit monaurally with a Starkey Gemini in-the-ear (ITE) hearing aid with directional and omnidirectional microphone modes. Speech recognition performance in noise was tested using the audiovisual version of the Connected Speech Test (CST v.3). The test was administered in auditory-only conditions as well as with the addition of visual cues for each of three head angles: 0°, 20°, and 40°. Results indicated improvement in speech recognition performance with changes in head angle for the auditory-only presentation mode at the 20° and 40° head angles when compared to 0°. Improvement in speech recognition performance for the auditory + visual mode was noted for the 20° head angle when compared to 0°. Additionally, a decrement in speech recognition performance for the auditory + visual mode was noted for the 40° head angle when compared to 0°. These results support a speech recognition advantage for listeners fit with one ITE hearing aid listening in a close listener-to-speaker distance when they turn their head slightly in order to increase signal intensity.



2010 ◽  
Vol 21 (07) ◽  
pp. 441-451 ◽  
Author(s):  
René H. Gifford ◽  
Lawrence J. Revit

Background: Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose: To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design: Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample: Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention: Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis: In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results: The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion: Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments.



2012 ◽  
Vol 23 (03) ◽  
pp. 171-181 ◽  
Author(s):  
Rachel A. McArdle ◽  
Mead Killion ◽  
Monica A. Mennite ◽  
Theresa H. Chisolm

Background: The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. Purpose: To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. Research Design: A repeated measures experimental design. Study Sample: Twenty veterans (aged 59–85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Data Collection and Analysis: Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results: Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. Conclusions: In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8–10% of elderly hearing aid users preferred one hearing aid.



2019 ◽  
Vol 30 (02) ◽  
pp. 131-144 ◽  
Author(s):  
Erin M. Picou ◽  
Todd A. Ricketts

AbstractPeople with hearing loss experience difficulty understanding speech in noisy environments. Beamforming microphone arrays in hearing aids can improve the signal-to-noise ratio (SNR) and thus also speech recognition and subjective ratings. Unilateral beamformer arrays, also known as directional microphones, accomplish this improvement using two microphones in one hearing aid. Bilateral beamformer arrays, which combine information across four microphones in a bilateral fitting, further improve the SNR. Early bilateral beamformers were static with fixed attenuation patterns. Recently adaptive, bilateral beamformers have been introduced in commercial hearing aids.The purpose of this article was to evaluate the potential benefits of adaptive unilateral and bilateral beamformers for improving sentence recognition and subjective ratings in a laboratory setting. A secondary purpose was to identify potential participant factors that explain some of the variability in beamformer benefit.Participants were fitted with study hearing aids equipped with commercially available adaptive unilateral and bilateral beamformers. Participants completed sentence recognition testing in background noise using three hearing aid settings (omnidirectional, unilateral beamformer, bilateral beamformer) and two noise source configurations (surround, side). After each condition, participants made subjective ratings of their perceived work, desire to control the situation, willingness to give up, and tiredness.Eighteen adults (50–80 yr, M = 66.2, σ = 8.6) with symmetrical mild sloping to severe hearing loss participated.Sentence recognition scores and subjective ratings were analyzed separately using generalized linear models with two within-subject factors (hearing aid microphone and noise configuration). Two benefit scores were calculated: (1) unilateral beamformer benefit (relative to performance with omnidirectional) and (2) additional bilateral beamformer benefit (relative to performance with unilateral beamformer). Hierarchical multiple linear regression was used to determine if beamformer benefit was associated with participant factors (age, degree of hearing loss, unaided speech in noise ability, spatial release from masking, and performance in omnidirectional).Sentence recognition and subjective ratings of work, control, and tiredness were better with both types of beamformers relative to the omnidirectional conditions. In addition, the bilateral beamformer offered small additional improvements relative to the unilateral beamformer in terms of sentence recognition and subjective ratings of tiredness. Speech recognition performance and subjective ratings were generally independent of noise configuration. Performance in the omnidirectional setting and pure-tone average were independently related to unilateral beamformer benefits. Those with the lowest performance or the largest degree of hearing loss benefited the most. No factors were significantly related to additional bilateral beamformer benefit.Adaptive bilateral beamformers offer additional advantages over adaptive unilateral beamformers in hearing aids. The small additional advantages with the adaptive beamformer are comparable to those reported in the literature with static beamformers. Although the additional benefits are small, they positively affected subjective ratings of tiredness. These data suggest that adaptive bilateral beamformers have the potential to improve listening in difficult situations for hearing aid users. In addition, patients who struggle the most without beamforming microphones may also benefit the most from the technology.



2017 ◽  
Vol 28 (01) ◽  
pp. 068-079
Author(s):  
Richard H. Wilson ◽  
Kadie C. Sharrett

AbstractTwo previous experiments from our laboratory with 70 interrupted monosyllabic words demonstrated that recognition performance was influenced by the temporal location of the interruption pattern. The interruption pattern (10 interruptions/sec, 50% duty cycle) was always the same and referenced word onset; the only difference between the patterns was the temporal location of the on- and off-segments of the interruption cycle. In the first study, both young and older listeners obtained better recognition performances when the initial on-segment coincided with word onset than when the initial on-segment was delayed by 50 msec. The second experiment with 24 young listeners detailed recognition performance as the interruption pattern was incremented in 10-msec steps through the 0- to 90-msec onset range. Across the onset conditions, 95% of the functions were either flat or U-shaped.To define the effects that interruption pattern locations had on word recognition by older listeners with sensorineural hearing loss as the interruption pattern incremented, re: word onset, from 0 to 90 msec in 10-msec steps.A repeated-measures design with ten interruption patterns (onset conditions) and one uninterruption condition.Twenty-four older males (mean = 69.6 yr) with sensorineural hearing loss participated in two 1-hour sessions. The three-frequency pure-tone average was 24.0 dB HL and word recognition was ≥80% correct.Seventy consonant-vowel nucleus-consonant words formed the corpus of materials with 25 additional words used for practice. For each participant, the 700 interrupted stimuli (70 words by 10 onset conditions), the 70 words uninterrupted, and two practice lists each were randomized and recorded on compact disc in 33 tracks of 25 words each.The data were analyzed at the participant and word levels and compared to the results obtained earlier on 24 young listeners with normal hearing. The mean recognition performance on the 70 words uninterrupted was 91.0% with an overall mean performance on the ten interruption conditions of 63.2% (range: 57.9–69.3%), compared to 80.4% (range: 73.0–87.7%) obtained earlier on the young adults. The best performances were at the extremes of the onset conditions. Standard deviations ranged from 22.1% to 28.1% (24 participants) and from 9.2% to 12.8% (70 words). An arithmetic algorithm categorized the shapes of the psychometric functions across the ten onset conditions. With the older participants in the current study, 40% of the functions were flat, 41.4% were U-shaped, and 18.6% were inverted U-shaped, which compared favorably to the function shapes by the young listeners in the earlier study of 50.0%, 41.4%, and 8.6%, respectively. There were two words on which the older listeners had 40% better performances.Collectively, the data are orderly, but at the individual word or participant level, the data are somewhat volatile, which may reflect auditory processing differences between the participant groups. The diversity of recognition performances by the older listeners on the ten interruption conditions with each of the 70 words supports the notion that the term hearing loss is inclusive of processes well beyond the filtering produced by end-organ sensitivity deficits.



Sign in / Sign up

Export Citation Format

Share Document