The Effects of Changes in Head Angle on Auditory and Visual Input for Omnidirectional and Directional Microphone Hearing Aids

2003 ◽  
Vol 12 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Paula Henry ◽  
Todd Ricketts

Improving the signal-to-noise ratio (SNR) for individuals with hearing loss who are listening to speech in noise provides an obvious benefit. Although binaural hearing provides the greatest advantage over monaural hearing in noise, some individuals with symmetrical hearing loss choose to wear only one hearing aid. The present study tested the hypothesis that individuals with symmetrical hearing loss fit with one hearing aid would demonstrate improved speech recognition in background noise with increases in head turn. Fourteen individuals were fit monaurally with a Starkey Gemini in-the-ear (ITE) hearing aid with directional and omnidirectional microphone modes. Speech recognition performance in noise was tested using the audiovisual version of the Connected Speech Test (CST v.3). The test was administered in auditory-only conditions as well as with the addition of visual cues for each of three head angles: 0°, 20°, and 40°. Results indicated improvement in speech recognition performance with changes in head angle for the auditory-only presentation mode at the 20° and 40° head angles when compared to 0°. Improvement in speech recognition performance for the auditory + visual mode was noted for the 20° head angle when compared to 0°. Additionally, a decrement in speech recognition performance for the auditory + visual mode was noted for the 40° head angle when compared to 0°. These results support a speech recognition advantage for listeners fit with one ITE hearing aid listening in a close listener-to-speaker distance when they turn their head slightly in order to increase signal intensity.

2012 ◽  
Vol 23 (03) ◽  
pp. 171-181 ◽  
Author(s):  
Rachel A. McArdle ◽  
Mead Killion ◽  
Monica A. Mennite ◽  
Theresa H. Chisolm

Background: The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. Purpose: To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. Research Design: A repeated measures experimental design. Study Sample: Twenty veterans (aged 59–85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Data Collection and Analysis: Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results: Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. Conclusions: In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8–10% of elderly hearing aid users preferred one hearing aid.


2019 ◽  
Vol 62 (10) ◽  
pp. 3834-3850 ◽  
Author(s):  
Todd A. Ricketts ◽  
Erin M. Picou ◽  
James Shehorn ◽  
Andrew B. Dittberner

Purpose Previous evidence supports benefits of bilateral hearing aids, relative to unilateral hearing aid use, in laboratory environments using audio-only (AO) stimuli and relatively simple tasks. The purpose of this study was to evaluate bilateral hearing aid benefits in ecologically relevant laboratory settings, with and without visual cues. In addition, we evaluated the relationship between bilateral benefit and clinically viable predictive variables. Method Participants included 32 adult listeners with hearing loss ranging from mild–moderate to severe–profound. Test conditions varied by hearing aid fitting type (unilateral, bilateral) and modality (AO, audiovisual). We tested participants in complex environments that evaluated the following domains: sentence recognition, word recognition, behavioral listening effort, gross localization, and subjective ratings of spatialization. Signal-to-noise ratio was adjusted to provide similar unilateral speech recognition performance in both modalities and across procedures. Results Significant and similar bilateral benefits were measured for both modalities on all tasks except listening effort, where bilateral benefits were not identified in either modality. Predictive variables were related to bilateral benefits in some conditions. With audiovisual stimuli, increasing hearing loss, unaided speech recognition in noise, and unaided subjective spatial ability were significantly correlated with increased benefits for many outcomes. With AO stimuli, these same predictive variables were not significantly correlated with outcomes. No predictive variables were correlated with bilateral benefits for sentence recognition in either modality. Conclusions Hearing aid users can expect significant bilateral hearing aid advantages for ecologically relevant, complex laboratory tests. Although future confirmatory work is necessary, these data indicate the presence of vision strengthens the relationship between bilateral benefits and degree of hearing loss.


2019 ◽  
Vol 30 (02) ◽  
pp. 131-144 ◽  
Author(s):  
Erin M. Picou ◽  
Todd A. Ricketts

AbstractPeople with hearing loss experience difficulty understanding speech in noisy environments. Beamforming microphone arrays in hearing aids can improve the signal-to-noise ratio (SNR) and thus also speech recognition and subjective ratings. Unilateral beamformer arrays, also known as directional microphones, accomplish this improvement using two microphones in one hearing aid. Bilateral beamformer arrays, which combine information across four microphones in a bilateral fitting, further improve the SNR. Early bilateral beamformers were static with fixed attenuation patterns. Recently adaptive, bilateral beamformers have been introduced in commercial hearing aids.The purpose of this article was to evaluate the potential benefits of adaptive unilateral and bilateral beamformers for improving sentence recognition and subjective ratings in a laboratory setting. A secondary purpose was to identify potential participant factors that explain some of the variability in beamformer benefit.Participants were fitted with study hearing aids equipped with commercially available adaptive unilateral and bilateral beamformers. Participants completed sentence recognition testing in background noise using three hearing aid settings (omnidirectional, unilateral beamformer, bilateral beamformer) and two noise source configurations (surround, side). After each condition, participants made subjective ratings of their perceived work, desire to control the situation, willingness to give up, and tiredness.Eighteen adults (50–80 yr, M = 66.2, σ = 8.6) with symmetrical mild sloping to severe hearing loss participated.Sentence recognition scores and subjective ratings were analyzed separately using generalized linear models with two within-subject factors (hearing aid microphone and noise configuration). Two benefit scores were calculated: (1) unilateral beamformer benefit (relative to performance with omnidirectional) and (2) additional bilateral beamformer benefit (relative to performance with unilateral beamformer). Hierarchical multiple linear regression was used to determine if beamformer benefit was associated with participant factors (age, degree of hearing loss, unaided speech in noise ability, spatial release from masking, and performance in omnidirectional).Sentence recognition and subjective ratings of work, control, and tiredness were better with both types of beamformers relative to the omnidirectional conditions. In addition, the bilateral beamformer offered small additional improvements relative to the unilateral beamformer in terms of sentence recognition and subjective ratings of tiredness. Speech recognition performance and subjective ratings were generally independent of noise configuration. Performance in the omnidirectional setting and pure-tone average were independently related to unilateral beamformer benefits. Those with the lowest performance or the largest degree of hearing loss benefited the most. No factors were significantly related to additional bilateral beamformer benefit.Adaptive bilateral beamformers offer additional advantages over adaptive unilateral beamformers in hearing aids. The small additional advantages with the adaptive beamformer are comparable to those reported in the literature with static beamformers. Although the additional benefits are small, they positively affected subjective ratings of tiredness. These data suggest that adaptive bilateral beamformers have the potential to improve listening in difficult situations for hearing aid users. In addition, patients who struggle the most without beamforming microphones may also benefit the most from the technology.


1986 ◽  
Vol 51 (3) ◽  
pp. 272-281 ◽  
Author(s):  
Larry E. Humes

The present study evaluates the rationales underlying several hearing aid selection procedures. The first portion of the evaluation confirms that the gain-selection rationales result in the selection of different hearing aids for a given patient. Nine different audiometric configurations representing varying degrees of fiat, sloping, and rising sensorineural hearing loss were considered. The second phase of the evaluation considered how well each procedure achieved the goal of maximizing speech recognition. This analysis made use of the Articulation Index and was applied to each of the nine audiometric configurations. The results of this analysis suggested that, given the ability to adjust the overall gain over a typical range available through most volume controls, any of the procedures could produce optimal aided speech recognition performance. The final portion of the evaluation examined the ability of each procedure to prescribe absolute gain and relative gain (frequency response) that corresponded to that preferred by hearing aid wearers. The data for preferred insertion gain came from a recent investigation by Leijon, Eriksson-Mangold, an d Beck-Karlsen (1984). The results of this evaluation suggested that some procedures prescribe gain values closer to those preferred by listeners than others. More data are needed on preferred gain values for a variety of configurations, however, before any one procedure can be recommended over another.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Chen ◽  
Zhe Wang ◽  
Ruijuan Dong ◽  
Xinxing Fu ◽  
Yuan Wang ◽  
...  

Objective: This study was aimed at evaluating improvements in speech-in-noise recognition ability as measured by signal-to-noise ratio (SNR) with the use of wireless remote microphone technology. These microphones transmit digital signals via radio frequency directly to hearing aids and may be a valuable assistive listening device for the hearing-impaired population of Mandarin speakers in China.Methods: Twenty-three adults (aged 19–80 years old) and fourteen children (aged 8–17 years old) with bilateral sensorineural hearing loss were recruited. The Mandarin Hearing in Noise Test was used to test speech recognition ability in adult subjects, and the Mandarin Hearing in Noise Test for Children was used for children. The subjects’ perceived SNR was measured using sentence recognition ability at three different listening distances of 1.5, 3, and 6 m. At each distance, SNR was obtained under three device settings: hearing aid microphone alone, wireless remote microphone alone, and hearing aid microphone and wireless remote microphone simultaneously.Results: At each test distance, for both adult and pediatric groups, speech-in-noise recognition thresholds were significantly lower with the use of the wireless remote microphone in comparison with the hearing aid microphones alone (P < 0.05), indicating better SNR performance with the wireless remote microphone. Moreover, when the wireless remote microphone was used, test distance had no effect on speech-in-noise recognition for either adults or children.Conclusion: Wireless remote microphone technology can significantly improve speech recognition performance in challenging listening environments for Mandarin speaking hearing aid users in China.


1984 ◽  
Vol 27 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Sandra Gordon-Salant

The aim of this study was to assess the effect of low-frequency amplification on speech recognition performance by hearing-impaired listeners. Consonant identification performance by subjects with flat hearing losses and high-frequency hearing losses was assessed in three different hearing aid conditions, in quiet and noise. The experimental hearing aids all provided extra high-frequency amplification but differed in the amount of low-frequency amplification. The results showed that listeners with flat hearing losses benefited by low-frequency amplification, whereas subjects with high-frequency hearing losses exhibited deteriorating scores in conditions with greatest low-frequency amplification. Analyses of phonetic feature perception and individual consonant recognition scores revealed subtle interactions between hearing loss configuration and amplification contour.


2015 ◽  
Vol 26 (01) ◽  
pp. 093-100 ◽  
Author(s):  
Jace Wolfe ◽  
Erin Schafer ◽  
Emily Mills ◽  
Andrew John ◽  
Mary Hudson ◽  
...  

Background: There is a paucity of published studies examining how children with hearing loss understand speech over the telephone. Previous studies on adults with hearing aids have suggested that adults with bilateral hearing aids experience significant difficulty recognizing speech on the telephone when listening with one ear, but the provision of telephone input to both ears substantially improved speech understanding. Purpose: The objectives of this study were to measure speech recognition in quiet and in noise for a group of older children with hearing loss over the telephone and to evaluate the effects of binaural hearing (e.g., DuoPhone) on speech recognition over the telephone. Research Design: A cross-sectional, repeated-measures design was used in this study. Study Sample: A total of 14 children, ages 6–14 yr, participated in the study. Participants were obtained using convenience sampling from a nonprofit clinic population. Intervention: Speech recognition in quiet and in noise with binaural versus monaural telephone input was compared in pediatric participants. Data Collection and Analysis: Monosyllabic word recognition was assessed in quiet and classroom noise set at 50 dBA in conditions with monaural and binaural (DuoPhone) telephone input. Results: The children’s speech recognition in quiet and in noise was significantly better with binaural telephone input relative to monaural telephone input. Conclusions: To obtain optimal performance on the telephone, the following considerations may apply: (1) use of amplification with binaural streaming capabilities (e.g., DuoPhone), (2) counseling of family and children on how to best use the telephone, (3) provision of telecoil with microphone attenuation for improved signal-to-noise ratio, and (4) use of probe tube measures to verify the appropriateness of the telephone programs.


2021 ◽  
Author(s):  
Yu-Lin Chang ◽  
Chia-Jou Liu ◽  
Pey-Yu Chen ◽  
Hung-Ching Lin

Abstract Objective: CI (cochlear implantation) candidacy is somewhat controversial in severe hearing loss among tonal mandarin-speaking patients. To assess the relationship between pure tone audiometry (PTA) and speech recognition score (SRS), with and without hearing aid amplification, among patients who did not meet the NIH criteria of CI candidacy in tonal language mandarian-speaking countries, especially those with severe hearing loss (70 dB HL < 4FPTA(0.5, 1, 2, 4 KHz) ≤ 90 dB HL) Materials and Methods: A total of 414 patients with sensorineural hearing loss with 774 ears were reviewed retrospectively in a tertiary referral center. The Mandarin Monosyllable Recognition Test (MMRT) was used to evaluate the SRS of these ears. Results: 31% (10/32) of the 32 ears with severe hearing loss, 70-90 dB HL, still showed poor speech recognition (SRS<30%) after hearing aid amplification, while 71% (46/65) of the 65 ears with profound hearing loss, > 90 dB HL, showed poor speech recognition with hearing aid amplification. Conclusions: The speech audiometry with Mandarin Monosyllable Recognition Test (MMRT) helped identify those patients whose 4FPTA< 90 dB HL fell outside the CI candidacy criteria of NIH in tonal language mandarin-speaking countries but showed significantly poor (SRS< 30%) speech recognition performance.


2012 ◽  
Vol 23 (08) ◽  
pp. 577-589 ◽  
Author(s):  
Mary Rudner ◽  
Thomas Lunner ◽  
Thomas Behrens ◽  
Elisabet Sundewall Thorén ◽  
Jerker Rönnberg

Background: Recently there has been interest in using subjective ratings as a measure of perceived effort during speech recognition in noise. Perceived effort may be an indicator of cognitive load. Thus, subjective effort ratings during speech recognition in noise may covary both with signal-to-noise ratio (SNR) and individual cognitive capacity. Purpose: The present study investigated the relation between subjective ratings of the effort involved in listening to speech in noise, speech recognition performance, and individual working memory (WM) capacity in hearing impaired hearing aid users. Research Design: In two experiments, participants with hearing loss rated perceived effort during aided speech perception in noise. Noise type and SNR were manipulated in both experiments, and in the second experiment hearing aid compression release settings were also manipulated. Speech recognition performance was measured along with WM capacity. Study Sample: There were 46 participants in all with bilateral mild to moderate sloping hearing loss. In Experiment 1 there were 16 native Danish speakers (eight women and eight men) with a mean age of 63.5 yr (SD = 12.1) and average pure tone (PT) threshold of 47. 6 dB (SD = 9.8). In Experiment 2 there were 30 native Swedish speakers (19 women and 11 men) with a mean age of 70 yr (SD = 7.8) and average PT threshold of 45.8 dB (SD = 6.6). Data Collection and Analysis: A visual analog scale (VAS) was used for effort rating in both experiments. In Experiment 1, effort was rated at individually adapted SNRs while in Experiment 2 it was rated at fixed SNRs. Speech recognition in noise performance was measured using adaptive procedures in both experiments with Dantale II sentences in Experiment 1 and Hagerman sentences in Experiment 2. WM capacity was measured using a letter-monitoring task in Experiment 1 and the reading span task in Experiment 2. Results: In both experiments, there was a strong and significant relation between rated effort and SNR that was independent of individual WM capacity, whereas the relation between rated effort and noise type seemed to be influenced by individual WM capacity. Experiment 2 showed that hearing aid compression setting influenced rated effort. Conclusions: Subjective ratings of the effort involved in speech recognition in noise reflect SNRs, and individual cognitive capacity seems to influence relative rating of noise type.


Revista CEFAC ◽  
2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Lidiéli Dalla Costa ◽  
Sinéia Neujahr dos Santos ◽  
Maristela Julio Costa

ABSTRACT Purpose: to investigate speech recognition in silence and in noise in subjects with unilateral hearing loss with and without hearing aids, and to analyze the benefit, self-perception of functional performance, satisfaction and the use of hearing aids in these subjects. Methods: eleven adults with unilateral, mixed and sensorineural, mild to severe hearing loss participated in this study. Speech recognition was evaluated by the Brazilian Portuguese sentences lists test; functional performance of the hearing was assessed by using the Speech Spatial and Qualities of Hearing Scale questionnaire; satisfaction was assessed by the Satisfaction with Amplification in Daily Life questionnaire, both in Brazilian Portuguese; and to assess the use of hearing aids, the patient's report was analyzed. Results: the adaptation of hearing aids provided benefits in speech recognition in all positions evaluated, both in silence and in noise. The subjects did not report major limitations in communication activities with the use of hearing aids. They were satisfied with the use of sound amplification. Most of the subjects did not use hearing aids, effectively. The discontinuity of hearing aids use can be justified by the difficulty on perceiving participation’s restriction caused by hearing loss, as well as the benefit of the hearing aid, besides the concern with batteries’ costs and aesthetic aspects. Conclusion: although showing benefits in speech recognition, in silence and in noise, and satisfaction with sound amplification, most subjects with unilateral hearing loss do not effectively use hearing aids.


Sign in / Sign up

Export Citation Format

Share Document