scholarly journals Benefits in Speech Recognition in Noise with Remote Wireless Microphones in Group Settings

2020 ◽  
Vol 31 (06) ◽  
pp. 404-411 ◽  
Author(s):  
Linda M. Thibodeau

Abstract Background Although hearing aids (HAs) and cochlear implants (CIs) can provide significant benefits to persons with hearing loss, users frequently report difficulty hearing in noisy environments, particularly when there are multiple talkers. Little is known about the benefits provided by currently available wireless microphones in multitalker situations. Purpose The purpose of this study was to compare the benefits received in speech recognition in noise by adults with hearing loss when using two different wireless microphone types in a simulated group setting. Research Design A quasi-experimental, repeated-measures design was used where performance in a control condition, HA/CI alone, was compared with performance in two wireless microphone intervention conditions. Study Sample Participants included ten listeners, aged 20-92 years, with bilateral sensorineural hearing loss who were experienced HA or CI users. Intervention The two wireless microphones by Phonak, Roger Pen, and Roger Select used the same digital modulation protocol to transmit the signal to compatible receivers. However, the Roger Pen operated in a fixed omnidirectional mode, whereas the Roger Select operated in an adaptive directional mode. Data Collection and Analysis Participants were asked to repeat Hearing in Noise Test sentences presented in restaurant noise in three conditions: HA/CI alone, HA/CI with a Roger Pen, or HA/CI with a Roger Select microphone placed in the center of a round table. Sentences were presented from one of five loudspeakers equally spaced with the participant, while restaurant noise was presented on each side at four signal-to-noise ratios (SNRs), including +5, 0, −5, and −10 dB. A two-way, repeated-measures analysis of variance was performed with main effects of listening condition and noise level. Results Significantly  greater speech recognition performance was achieved with the wireless microphones than with listening with just the HA or CI. Furthermore, at the −5- and −10-dB SNR conditions, the Roger Select resulted in significantly better performance than the Roger Pen microphone. Conclusions The results suggest that the Roger Select microphone can provide significant benefits in speech recognition in noise over the use of HA/CI alone (61%) and also significant benefits over the use of a Roger Pen (16%) in a simulated group dining experience.

Author(s):  
Linda M. Thibodeau

Background: Although hearing aids (HAs) and cochlear implants (CIs) can provide significant benefits topersons with hearing loss, users frequently report difficulty hearing in noisy environments, particularlywhen there are multiple talkers. Little is known about the benefits provided by currently available wirelessmicrophones in multitalker situations.<br />Purpose: The purpose of this study was to compare the benefits received in speech recognition in noiseby adults with hearing loss when using two different wireless microphone types in a simulated groupsetting.<br />Research Design: A quasi-experimental, repeated-measures design was used where performance in acontrol condition, HA/CI alone, was compared with performance in two wireless microphone interventionconditions.<br />Study Sample: Participants included ten listeners, aged 20–92 years, with bilateral sensorineural hearingloss who were experienced HA or CI users.<br />Intervention: The two wireless microphones by Phonak, Roger Pen, and Roger Select used the samedigital modulation protocol to transmit the signal to compatible receivers. However, the Roger Pen operatedin a fixed omnidirectional mode, whereas the Roger Select operated in an adaptive directionalmode.<br />Data Collection and Analysis: Participants were asked to repeat Hearing in Noise Test sentences presentedin restaurant noise in three conditions: HA/CI alone, HA/CI with a Roger Pen, or HA/CI with aRoger Select microphone placed in the center of a round table. Sentences were presented from oneof five loudspeakers equally spaced with the participant, while restaurant noise was presented on eachside at four signal-to-noise ratios (SNRs), including +5, 0, -5, and -10 dB. A two-way, repeated-measuresanalysis of variance was performed with main effects of listening condition and noise level.<br />Results: Significantly greater speech recognition performance was achieved with the wireless microphonesthan with listening with just the HA or CI. Furthermore, at the -5 and -10 dB SNR conditions,the Roger Select resulted in significantly better performance than the Roger Pen microphone.<br />Conclusions: The results suggest that the Roger Select microphone can provide significant benefits inspeech recognition in noise over the use of HA/CI alone (61 percent) and also significant benefits over the useof a Roger Pen (16 percent) in a simulated group-dining experience.<br />


2010 ◽  
Vol 21 (08) ◽  
pp. 546-557 ◽  
Author(s):  
Kristi Oeding ◽  
Michael Valente ◽  
Jessica Kerckhoff

Background: Patients with unilateral sensorineural hearing loss (USNHL) experience great difficulty listening to speech in noisy environments. A directional microphone (DM) could potentially improve speech recognition in this difficult listening environment. It is well known that DMs in behind-the-ear (BTE) and custom hearing aids can provide a greater signal-to-noise ratio (SNR) in comparison to an omnidirectional microphone (OM) to improve speech recognition in noise for persons with hearing impairment. Studies examining the DM in bone anchored auditory osseointegrated implants (Baha), however, have been mixed, with little to no benefit reported for the DM compared to an OM. Purpose: The primary purpose of this study was to determine if there are statistically significant differences in the mean reception threshold for sentences (RTS in dB) in noise between the OM and DM in the Baha® Divino™. The RTS of these two microphone modes was measured utilizing two loudspeaker arrays (speech from 0° and noise from 180° or a diffuse eight-loudspeaker array) and with the better ear open or closed with an earmold impression and noise attenuating earmuff. Subjective benefit was assessed using the Abbreviated Profile of Hearing Aid Benefit (APHAB) to compare unaided and aided (Divino OM and DM combined) problem scores. Research Design: A repeated measures design was utilized, with each subject counterbalanced to each of the eight treatment levels for three independent variables: (1) microphone (OM and DM), (2) loudspeaker array (180° and diffuse), and (3) better ear (open and closed). Study Sample: Sixteen subjects with USNHL currently utilizing the Baha were recruited from Washington University's Center for Advanced Medicine and the surrounding area. Data Collection and Analysis: Subjects were tested at the initial visit if they entered the study wearing the Divino or after at least four weeks of acclimatization to a loaner Divino. The RTS was determined utilizing Hearing in Noise Test (HINT) sentences in the R-Space™ system, and subjective benefit was determined utilizing the APHAB. A three-way repeated measures analysis of variance (ANOVA) and a paired samples t-test were utilized to analyze results of the HINT and APHAB, respectively. Results: Results revealed statistically significant differences within microphone (p < 0.001; directional advantage of 3.2 dB), loudspeaker array (p = 0.046; 180° advantage of 1.1 dB), and better ear conditions (p < 0.001; open ear advantage of 4.9 dB). Results from the APHAB revealed statistically and clinically significant benefit for the Divino relative to unaided on the subscales of Ease of Communication (EC) (p = 0.037), Background Noise (BN) (p < 0.001), and Reverberation (RV) (p = 0.005). Conclusions: The Divino's DM provides a statistically significant improvement in speech recognition in noise compared to the OM for subjects with USNHL. Therefore, it is recommended that audiologists consider selecting a Baha with a DM to provide improved speech recognition performance in noisy listening environments.


2015 ◽  
Vol 26 (08) ◽  
pp. 724-731 ◽  
Author(s):  
Krishna S. Rodemerk ◽  
Jason A. Galster

Background: Many studies have reported the speech recognition benefits of a personal remote microphone system when used by adult listeners with hearing loss. The advance of wireless technology has allowed for many wireless audio transmission protocols. Some of these protocols interface with commercially available hearing aids. As a result, commercial remote microphone systems use a variety of different protocols for wireless audio transmission. It is not known how these systems compare, with regard to adult speech recognition in noise. Purpose: The primary goal of this investigation was to determine the speech recognition benefits of four different commercially available remote microphone systems, each with a different wireless audio transmission protocol. Research Design: A repeated-measures design was used in this study. Study Sample: Sixteen adults, ages 52 to 81 yr, with mild to severe sensorineural hearing loss participated in this study. Intervention: Participants were fit with three different sets of bilateral hearing aids and four commercially available remote microphone systems (FM, 900 MHz, 2.4 GHz, and Bluetooth® paired with near-field magnetic induction). Data Collection and Analysis: Speech recognition scores were measured by an adaptive version of the Hearing in Noise Test (HINT). The participants were seated both 6 and 12′ away from the talker loudspeaker. Participants repeated HINT sentences with and without hearing aids and with four commercially available remote microphone systems in both seated positions with and without contributions from the hearing aid or environmental microphone (24 total conditions). The HINT SNR-50, or the signal-to-noise ratio required for correct repetition of 50% of the sentences, was recorded for all conditions. A one-way repeated measures analysis of variance was used to determine statistical significance of microphone condition. Results: The results of this study revealed that use of the remote microphone systems statistically improved speech recognition in noise relative to unaided and hearing aid-only conditions across all four wireless transmission protocols at 6 and 12′ away from the talker. Conclusions: Participants showed a significant improvement in speech recognition in noise when comparing four remote microphone systems with different wireless transmission methods to hearing aids alone.


2012 ◽  
Vol 23 (03) ◽  
pp. 171-181 ◽  
Author(s):  
Rachel A. McArdle ◽  
Mead Killion ◽  
Monica A. Mennite ◽  
Theresa H. Chisolm

Background: The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. Purpose: To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. Research Design: A repeated measures experimental design. Study Sample: Twenty veterans (aged 59–85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Data Collection and Analysis: Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results: Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. Conclusions: In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8–10% of elderly hearing aid users preferred one hearing aid.


2019 ◽  
Vol 30 (07) ◽  
pp. 607-618 ◽  
Author(s):  
Thomas Wesarg ◽  
Susan Arndt ◽  
Konstantin Wiebe ◽  
Frauke Schmid ◽  
Annika Huber ◽  
...  

AbstractPrevious research in cochlear implant (CI) recipients with bilateral severe-to-profound sensorineural hearing loss showed improvements in speech recognition in noise using remote wireless microphone systems. However, to our knowledge, no previous studies have addressed the benefit of these systems in CI recipients with single-sided deafness.The objective of this study was to evaluate the potential improvement in speech recognition in noise for distant speakers in single-sided deaf (SSD) CI recipients obtained using the digital remote wireless microphone system, Roger. In addition, we evaluated the potential benefit in normal hearing (NH) participants gained by applying this system.Speech recognition in noise for a distant speaker in different conditions with and without Roger was evaluated with a two-way repeated-measures design in each group, SSD CI recipients, and NH participants. Post hoc analyses were conducted using pairwise comparison t-tests with Bonferroni correction.Eleven adult SSD participants aided with CIs and eleven adult NH participants were included in this study.All participants were assessed in 15 test conditions (5 listening conditions × 3 noise levels) each. The listening conditions for SSD CI recipients included the following: (I) only NH ear and CI turned off, (II) NH ear and CI (turned on), (III) NH ear and CI with Roger 14, (IV) NH ear with Roger Focus and CI, and (V) NH ear with Roger Focus and CI with Roger 14. For the NH participants, five corresponding listening conditions were chosen: (I) only better ear and weaker ear masked, (II) both ears, (III) better ear and weaker ear with Roger Focus, (IV) better ear with Roger Focus and weaker ear, and (V) both ears with Roger Focus. The speech level was fixed at 65 dB(A) at 1 meter from the speech-presenting loudspeaker, yielding a speech level of 56.5 dB(A) at the recipient's head. Noise levels were 55, 65, and 75 dB(A). Digitally altered noise recorded in school classrooms was used as competing noise. Speech recognition was measured in percent correct using the Oldenburg sentence test.In SSD CI recipients, a significant improvement in speech recognition was found for all listening conditions with Roger (III, IV, and V) versus all no-Roger conditions (I and II) at the higher noise levels (65 and 75 dB[A]). NH participants significantly benefited from the application of Roger in noise for higher levels, too. In both groups, no significant difference was detected between any of the different listening conditions at 55 dB(A) competing noise. There was also no significant difference between any of the Roger conditions III, IV, and V across all noise levels.The application of the advanced remote wireless microphone system, Roger, in SSD CI recipients provided significant benefits in speech recognition for distant speakers at higher noise levels. In NH participants, the application of Roger also produced a significant benefit in speech recognition in noise.


Author(s):  
Sharon Miller ◽  
Jace Wolfe ◽  
Mila Duke ◽  
Erin Schafer ◽  
Smita Agrawal ◽  
...  

Abstract Background Cochlear implant (CI) recipients frequently experience difficulty understanding speech over the telephone and rely on hearing assistive technology (HAT) to improve performance. Bilateral inter-processor audio streaming technology using nearfield magnetic induction is an advanced technology incorporated within a hearing aid or CI processor that can deliver telephone audio signals captured at one sound processor to the sound processor at the opposite ear. To date, limited data exist examining the efficacy of this technology in CI users to improve speech understanding on the telephone. Purpose The primary objective of this study was to examine telephone speech recognition outcomes in bilateral CI recipients in a bilateral inter-processor audio streaming condition (DuoPhone) compared with a monaural condition (i.e., telephone listening with one sound processor) in quiet and in background noise. Outcomes in the monaural and bilateral conditions using either a telecoil or T-Mic2 technology were also assessed. The secondary aim was to examine how deactivating microphone input in the contralateral processor in the bilateral wireless streaming conditions, and thereby modifying the signal-to-noise ratio, affected speech recognition in noise. Research Design A repeated-measures design was used to evaluate speech recognition performance in quiet and competing noise with the telephone signal transmitted acoustically or via the telecoil to the ipsilateral sound processor microphone in monaural and bilateral wireless streaming listening conditions. Study Sample Nine bilateral CI users with Advanced Bionics HiRes 90K and/or CII devices were included in the study. Data Collection and Analysis The effects of phone input (monaural [DuoPhone Off] vs. bilateral [DuoPhone on]) and processor input (T-Mic2 vs. telecoil) on word recognition in quiet and noise were assessed using separate repeated-measures analysis of variance. Effect of the contralateral device mic deactivation on speech recognition outcomes for the T-Mic2 DuoPhone conditions was assessed using paired Student's t-tests. Results Telephone speech recognition was significantly better in the bilateral inter-processor streaming conditions relative to the monaural conditions in both quiet and noise. Speech recognition outcomes were similar in quiet and noise when using the T-Mic2 and telecoil in the monaural and bilateral conditions. For the acoustic DuoPhone conditions using the T-Mic2, speech recognition in noise was significantly better when the microphone of the contralateral processor was disabled. Conclusion Inter-processor audio streaming allows for bilateral listening on the telephone and produces better speech recognition in quiet and in noise compared with monaural listening conditions for adult CI recipients.


2015 ◽  
Vol 26 (01) ◽  
pp. 093-100 ◽  
Author(s):  
Jace Wolfe ◽  
Erin Schafer ◽  
Emily Mills ◽  
Andrew John ◽  
Mary Hudson ◽  
...  

Background: There is a paucity of published studies examining how children with hearing loss understand speech over the telephone. Previous studies on adults with hearing aids have suggested that adults with bilateral hearing aids experience significant difficulty recognizing speech on the telephone when listening with one ear, but the provision of telephone input to both ears substantially improved speech understanding. Purpose: The objectives of this study were to measure speech recognition in quiet and in noise for a group of older children with hearing loss over the telephone and to evaluate the effects of binaural hearing (e.g., DuoPhone) on speech recognition over the telephone. Research Design: A cross-sectional, repeated-measures design was used in this study. Study Sample: A total of 14 children, ages 6–14 yr, participated in the study. Participants were obtained using convenience sampling from a nonprofit clinic population. Intervention: Speech recognition in quiet and in noise with binaural versus monaural telephone input was compared in pediatric participants. Data Collection and Analysis: Monosyllabic word recognition was assessed in quiet and classroom noise set at 50 dBA in conditions with monaural and binaural (DuoPhone) telephone input. Results: The children’s speech recognition in quiet and in noise was significantly better with binaural telephone input relative to monaural telephone input. Conclusions: To obtain optimal performance on the telephone, the following considerations may apply: (1) use of amplification with binaural streaming capabilities (e.g., DuoPhone), (2) counseling of family and children on how to best use the telephone, (3) provision of telecoil with microphone attenuation for improved signal-to-noise ratio, and (4) use of probe tube measures to verify the appropriateness of the telephone programs.


2015 ◽  
Vol 26 (05) ◽  
pp. 478-493 ◽  
Author(s):  
Francis Kuk ◽  
Eric Seper ◽  
Chi Lau ◽  
Bryan Crose ◽  
Petri Korhonen

Background: Bilateral contralateral routing of signals (BiCROS) hearing aids function to restore audibility of sounds originating from the side of the unaidable ear. However, when speech is presented to the side of the aidable ear and noise to the side of the unaidable ear, a BiCROS arrangement may reduce intelligibility of the speech signal. This negative effect may be circumvented if an on/off switch is available on the contralateral routing of signals (CROS) transmitter. Purpose: This study evaluated if the proper use of the on/off switch on a CROS transmitter could enhance speech recognition in noise and sound localization abilities. The participants’ subjective reactions to the use of the BiCROS, including the use of the on/off switch in real-life were also evaluated. Research Design: A between-subjects, repeated-measures design was used to assess differences in speech recognition (in quiet and in noise) and localization abilities under four hearing aid conditions (unaided, unilaterally aided, fixed BiCROS setting, and adjusted BiCROS setting) with speech and noise stimuli presented from different azimuths. Participants were trained on the use of the on/off switch on the BiCROS transmitter before testing in the adjusted BiCROS settings. Subjective ratings were obtained with the Speech, Spatial, and Sound Quality (SSQ) questionnaire and a custom questionnaire. Study Sample: Nine adult BiCROS candidates participated in this study. Data Collection and Analysis: Participants wore the Widex Dream-m-CB hearing aid on the aidable ear for 1 week. They then wore the BiCROS for the remainder of the study. Speech recognition and localization testing were completed in four hearing aid conditions (unaided, unilateral aided, fixed BiCROS, and adjusted BiCROS). Speech recognition was evaluated during the first three visits, whereas localization was evaluated over the course of the study. Participants completed the SSQ questionnaire before each visit. The CROS questionnaire was completed at the final visit. A repeated measures analysis of variance with Bonferroni post hoc analysis was used to evaluate the significance of the results on speech recognition, localization, and the SSQ. Results: The results revealed that the adjusted BiCROS condition improved speech recognition scores by 20 rau (rationalized arcsine unit) when speech was presented to the aidable ear and localization by 37% when sounds are presented from the side of the unaidable ear over the fixed BiCROS condition. Statistically significant benefit on the SSQ was also noted with the adjusted BiCROS condition compared to the unilateral fitting. Conclusions: These findings supported the value of an on/off switch on a CROS transmitter because it allows convenient selective transmission of sounds. It also highlighted the importance of instructions and practice in using the BiCROS hearing aid successfully.


2012 ◽  
Vol 23 (08) ◽  
pp. 577-589 ◽  
Author(s):  
Mary Rudner ◽  
Thomas Lunner ◽  
Thomas Behrens ◽  
Elisabet Sundewall Thorén ◽  
Jerker Rönnberg

Background: Recently there has been interest in using subjective ratings as a measure of perceived effort during speech recognition in noise. Perceived effort may be an indicator of cognitive load. Thus, subjective effort ratings during speech recognition in noise may covary both with signal-to-noise ratio (SNR) and individual cognitive capacity. Purpose: The present study investigated the relation between subjective ratings of the effort involved in listening to speech in noise, speech recognition performance, and individual working memory (WM) capacity in hearing impaired hearing aid users. Research Design: In two experiments, participants with hearing loss rated perceived effort during aided speech perception in noise. Noise type and SNR were manipulated in both experiments, and in the second experiment hearing aid compression release settings were also manipulated. Speech recognition performance was measured along with WM capacity. Study Sample: There were 46 participants in all with bilateral mild to moderate sloping hearing loss. In Experiment 1 there were 16 native Danish speakers (eight women and eight men) with a mean age of 63.5 yr (SD = 12.1) and average pure tone (PT) threshold of 47. 6 dB (SD = 9.8). In Experiment 2 there were 30 native Swedish speakers (19 women and 11 men) with a mean age of 70 yr (SD = 7.8) and average PT threshold of 45.8 dB (SD = 6.6). Data Collection and Analysis: A visual analog scale (VAS) was used for effort rating in both experiments. In Experiment 1, effort was rated at individually adapted SNRs while in Experiment 2 it was rated at fixed SNRs. Speech recognition in noise performance was measured using adaptive procedures in both experiments with Dantale II sentences in Experiment 1 and Hagerman sentences in Experiment 2. WM capacity was measured using a letter-monitoring task in Experiment 1 and the reading span task in Experiment 2. Results: In both experiments, there was a strong and significant relation between rated effort and SNR that was independent of individual WM capacity, whereas the relation between rated effort and noise type seemed to be influenced by individual WM capacity. Experiment 2 showed that hearing aid compression setting influenced rated effort. Conclusions: Subjective ratings of the effort involved in speech recognition in noise reflect SNRs, and individual cognitive capacity seems to influence relative rating of noise type.


2013 ◽  
Vol 24 (10) ◽  
pp. 927-940 ◽  
Author(s):  
Erin C. Schafer ◽  
Denise Romine ◽  
Elizabeth Musgrave ◽  
Sadaf Momin ◽  
Christy Huynh

Background: Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. Purpose: The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. Research Design: A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Study Sample: Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. Data Collection and Analysis: In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. Results: The results in Experiment 1 suggested that both FM receivers provided significantly better speech-recognition performance in noise than the CI alone; however, the electromagnetically coupled receiver provided significantly better speech-recognition performance in noise and better ratings in some situations than the electrically coupled receiver when set to the same gain. In Experiment 2, the primary analysis suggested significantly better speech-recognition performance in noise for the neck-loop versus electrically coupled receiver, but a second analysis, using the best performance across gain settings for each device, revealed no significant differences between the two FM receivers. Experiment 3 revealed monitor-earphone output differences in the Nucleus 5 sound processor for the two FM receivers when set to the +8 setting used in Experiment 1 but equal output when the electrically coupled device was set to a +16 gain setting and the electromagnetically coupled device was set to the +8 gain setting. Conclusions: Individuals with contemporary sound processors may show more favorable speech-recognition performance in noise electromagnetically coupled FM systems (i.e., Oticon Arc), which is most likely related to the input processing and signal processing pathway within the CI sound processor for direct input versus telecoil input. Further research is warranted to replicate these findings with a larger sample size and to develop and validate a more objective approach to fitting FM systems to CI sound processors.


Sign in / Sign up

Export Citation Format

Share Document