Genetic Inheritance and Genome-Wide Association Statistical Test Performance Using Simulated Data

Author(s):  
Philip Chester Cooley ◽  
Robert F. Clark ◽  
Ralph E. Folsom ◽  
Grier Page
Author(s):  
Ian J. Deary

‘What are the contributions of environments and genes to intelligence differences?’ asks whether genetic inheritance and the environments people experience affect intelligence differences. Researchers use two main resources to answer this question: twins and samples of DNA. Studies of identical and non-identical twins are used to show the contributions of genes, shared environment, and non-shared environment to people’s differences in traits. Twin studies tell us that by adulthood, about two-thirds of intelligence differences are caused by how people vary in their genetic inheritance, and that both shared and non-shared environments make significant contributions to intelligence differences. The introduction of genome-wide association studies in 2011 has provided a new method of estimating the heritability of intelligence.


2015 ◽  
Vol 13 (06) ◽  
pp. 1571004
Author(s):  
Kyung-Ah Sohn ◽  
Kyubum Wee

Detection of epistatic interactions in genome-wide association studies is a computationally hard problem. Many detection algorithms have been proposed and will continue to be. Most of those algorithms measure their predictive power by running on simulated data many times under various disease models. However, we find that there have been subtle differences in interpreting the meaning of existing disease models among the previous studies on detection of epistatic interactions. We elucidate those differences and suggest that future studies on epistatic interactions in GWAS state explicitly which versions/interpretations are employed. We also provide a way to facilitate setting parameters of disease models.


2020 ◽  
Vol 36 (19) ◽  
pp. 4957-4959
Author(s):  
David B Blumenthal ◽  
Lorenzo Viola ◽  
Markus List ◽  
Jan Baumbach ◽  
Paolo Tieri ◽  
...  

Abstract Summary Simulated data are crucial for evaluating epistasis detection tools in genome-wide association studies. Existing simulators are limited, as they do not account for linkage disequilibrium (LD), support limited interaction models of single nucleotide polymorphisms (SNPs) and only dichotomous phenotypes or depend on proprietary software. In contrast, EpiGEN supports SNP interactions of arbitrary order, produces realistic LD patterns and generates both categorical and quantitative phenotypes. Availability and implementation EpiGEN is implemented in Python 3 and is freely available at https://github.com/baumbachlab/epigen. Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 989-994 ◽  
pp. 2426-2430
Author(s):  
Zhi Hui Zhou ◽  
Gui Xia Liu ◽  
Ling Tao Su ◽  
Liang Han ◽  
Lun Yan

Extensive studies have shown that many complex diseases are influenced by interaction of certain genes, while due to the limitations and drawbacks of adopting logistic regression (LR) to detect epistasis in human Genome-Wide Association Studies (GWAS), we propose a new method named LASSO-penalized-model search algorithm (LPMA) by restricting it to a tuning constant and combining it with a penalization of the L1-norm of the complexity parameter, and it is implemented utilizing the idea of multi-step strategy. LASSO penalized regression particularly shows advantageous properties when the number of factors far exceeds the number of samples. We compare the performance of LPMA with its competitors. Through simulated data experiments, LPMA performs better regarding to the identification of epistasis and prediction accuracy.


Author(s):  
Katie Saund ◽  
Evan S Snitkin

Bacterial genome-wide association studies (bGWAS) capture associations between genomic variation and phenotypic variation. Convergence based bGWAS methods identify genomic mutations that occur independently multiple times on the phylogenetic tree in the presence of phenotypic variation more often than is expected by chance. This work introduces hogwash, an open source R package that implements three algorithms for convergence based bGWAS. Hogwash additionally contains two burden testing approaches to perform gene- or pathway-analysis to improve power and increase convergence detection for related but weakly penetrant genotypes. To identify optimal use cases, we applied hogwash to data simulated with a variety of phylogenetic signals and convergence distributions. These simulated data are publicly available and contain the relevant metadata regarding convergence and phylogenetic signal for each phenotype and genotype. Hogwash is available for download from GitHub.


2020 ◽  
Vol 6 (11) ◽  
Author(s):  
Katie Saund ◽  
Evan S. Snitkin

Bacterial genome-wide association studies (bGWAS) capture associations between genomic variation and phenotypic variation. Convergence-based bGWAS methods identify genomic mutations that occur independently multiple times on the phylogenetic tree in the presence of phenotypic variation more often than is expected by chance. This work introduces hogwash, an open source R package that implements three algorithms for convergence-based bGWAS. Hogwash additionally contains two burden testing approaches to perform gene or pathway analysis to improve power and increase convergence detection for related but weakly penetrant genotypes. To identify optimal use cases, we applied hogwash to data simulated with a variety of phylogenetic signals and convergence distributions. These simulated data are publicly available and contain the relevant metadata regarding convergence and phylogenetic signal for each phenotype and genotype. Hogwash is available for download from GitHub.


2017 ◽  
Author(s):  
Caitlin Collins ◽  
Xavier Didelot

AbstractGenome-Wide Association Studies (GWAS) in microbial organisms have the potential to vastly improve the way we understand, manage, and treat infectious diseases. Yet, GWAS methods established thus far remain insufficiently able to capitalise on the growing wealth of bacterial and viral genetic sequence data. Facing clonal population structure and homologous recombination, existing GWAS methods struggle to achieve both the precision necessary to reject spurious findings and the power required to detect associations in microbes. In this paper, we introduce a novel phylogenetic approach that has been tailor-made for microbial GWAS, which is applicable to organisms ranging from purely clonal to frequently recombining, and to both binary and continuous phenotypes. Our approach is robust to the confounding effects of both population structure and recombination, while maintaining high statistical power to detect associations. Thorough testing via application to simulated data provides strong support for the power and specificity of our approach and demonstrates the advantages offered over alternative cluster-based and dimension-reduction methods. Two applications toNeisseria meningitidisillustrate the versatility and potential of our method, confirming previously-identified penicillin resistance loci and resulting in the identification of both well-characterised and novel drivers of invasive disease. Our method is implemented as an open-source R package called treeWAS which is freely available athttps://github.com/caitiecollins/treeWAS.


Sign in / Sign up

Export Citation Format

Share Document