Analysis of Signal to Noise Ratio for Laser Heterodyne with Weak Local Oscillator Based on Multi-pixel Photon Counter

2013 ◽  
Vol 40 (3) ◽  
pp. 0308008
Author(s):  
张合勇 Zhang Heyong ◽  
刘立生 Liu Lisheng ◽  
赵帅 Zhao Shuai ◽  
王挺峰 Wang Tingfeng ◽  
郭劲 Guo Jin
1983 ◽  
Vol 61 (2) ◽  
pp. 318-331 ◽  
Author(s):  
Denis Vincent ◽  
Gabriel Otis

We performed a theoretical and experimental study of a 10.6 μm heterodyne detection system with nonlinear postdetection. A single laser serves as both transmitter and local oscillator; the intermediate frequency is given by the Doppler effect due to a rotating target. An electrooptic crystal modulates the amplitude of the laser beam at a frequency of 15 kHz; a synchronous voltmeter measures the return signal after the nonlinear element. Values of the signal-to-noise ratio with respect to incident optical power agree with the results of the theoretical model. In particular, experimentally measured target-induced frequency spreading effects on the signal-to-noise ratio correspond to the predictions of the model. We also describe an experimental system.


2020 ◽  
Author(s):  
Brian Redman

This paper is a follow-up to two previous papers, one introducing the new bitstream Photon Counting Chirped Amplitude Modulation (AM) Lidar (PC-CAML) with the unipolar Digital Logic Local Oscillator (DLLO) concept, and the other paper introducing the improvement thereof using the bipolar DLLO. In that previous work, there was only a single channel of digital mixing of the DLLO with the received photon counting signal. This paper introduces a new bitstream PC-CAML receiver architecture with an in-phase (I) digital mixing channel and a quadrature phase (Q) digital mixing channel for digital I/Q demodulation with the bipolar DLLO to improve the signal-to-noise ratio (SNR) by 3 dB compared to that for the single digital mixing channel with the bipolar DLLO and by 5.5 dB compared to that for the single digital mixing channel with the unipolar DLLO. (patent pending) The bipolar DLLO with digital I/Q demodulation architecture discussed in this paper retains the key advantages of the previous bitstream PC-CAML with a DLLO systems since it also replaces bulky, power-hungry, and expensive wideband RF analog electronics with digital components that can be implemented in inexpensive silicon complementary metal-oxide-semiconductor (CMOS) read-out integrated circuits (ROICs) to make the bitstream PC-CAML with a DLLO more suitable for compact lidar-on-a-chip systems and lidar array receivers than previous PC-CAML systems. This paper introduces the bipolar DLLO with digital I/Q demodulation receiver architecture for bitstream PC-CAML and presents the initial signal-to-noise ratio (SNR) theory with comparisons to Monte Carlo simulation results.


2013 ◽  
Vol 33 (3) ◽  
pp. 0304001
Author(s):  
张国青 Zhang Guoqing ◽  
张英堂 Zhang Yingtang ◽  
翟学军 Zhai Xuejun ◽  
刘汉臣 Liu Hanchen ◽  
朱长军 Zhu Changjun

2019 ◽  
Author(s):  
Brian Redman

This paper is a follow-up to a previous paper introducing the new bitstream Photon Counting Chirped Amplitude Modulation (AM) Lidar (PC-CAML) with a Digital Logic Local Oscillator (DLLO) concept. In that previous work, the DLLO was unipolar. In this paper, a new bipolar DLLO for the bitstream PC-CAML is introduced (patent pending). The bipolar DLLO retains the key advantages of the unipolar DLLO for the bitstream PC-CAML since it also replaces bulky, power-hungry, and expensive wideband RF analog electronics with digital components that can be implemented in inexpensive silicon complementary metal-oxide-semiconductor (CMOS) read-out integrated circuits (ROICs) to make the bitstream PC-CAML with a DLLO more suitable for compact lidar-on-a-chip systems and lidar array receivers than previous PC-CAML systems. In addition, the bipolar DLLO improves the electrical power signal-to-noise ratio (SNR) of the bitstream PC-CAML by about 2.5 dB compared to that of the unipolar DLLO as shown by the theoretical and Monte Carlo simulation results presented in this paper. Theoretically, there should be a 3 dB improvement for the bipolar DLLO from the elimination of the signal power loss to the DC component of the intermediate frequency (IF) spectrum that occurs with the unipolar DLLO. However, this improvement is partially offset by a higher quantization noise for the bipolar DLLO compared to that of the unipolar DLLO as explained in this paper.This paper introduces the bipolar DLLO for bitstream PC-CAML concept and presents the initial signal-to-noise ratio (SNR) theory with comparisons to Monte Carlo simulation results.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Sign in / Sign up

Export Citation Format

Share Document