Optimization of laser ranging algorithm based on asymmetric sinc function fitting

2017 ◽  
Vol 46 (8) ◽  
pp. 806008
Author(s):  
郭荣幸 Guo Rongxing ◽  
赵亚飞 Zhao Yafei ◽  
马鹏阁 Ma Pengge ◽  
陈恩庆 Chen Enqing
Author(s):  
Noam Goldberg ◽  
Steffen Rebennack ◽  
Youngdae Kim ◽  
Vitaliy Krasko ◽  
Sven Leyffer

AbstractWe consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. 10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.


2021 ◽  
Vol 13 (15) ◽  
pp. 2882
Author(s):  
Hao Chen ◽  
Shane R. Cloude ◽  
Joanne C. White

In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<~27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).


Author(s):  
C. Veillet ◽  
J. F. Mangin ◽  
J. E. Chabaubie ◽  
C. Dumolin ◽  
D. Feraudy ◽  
...  

Measurement ◽  
2013 ◽  
Vol 46 (8) ◽  
pp. 2341-2347 ◽  
Author(s):  
Yibo Li ◽  
Dian Wang ◽  
Liying Sun

Sign in / Sign up

Export Citation Format

Share Document