scholarly journals Single Cell Transcriptional Profiling of Adult Mouse Cardiomyocytes

Author(s):  
James M. Flynn ◽  
Luis F. Santana ◽  
Simon Melov
2021 ◽  
Vol 24 (4) ◽  
pp. 572-583 ◽  
Author(s):  
Jacob A. Blum ◽  
Sandy Klemm ◽  
Jennifer L. Shadrach ◽  
Kevin A. Guttenplan ◽  
Lisa Nakayama ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 100673
Author(s):  
Shichen Liu ◽  
Maximilian Nguyen ◽  
Sahand Hormoz

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yibo Gan ◽  
Jian He ◽  
Jun Zhu ◽  
Zhengyang Xu ◽  
Zhong Wang ◽  
...  

AbstractA comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.


2018 ◽  
Vol 3 ◽  
pp. 70 ◽  
Author(s):  
Nicolas M.B. Brancucci ◽  
Mariana De Niz ◽  
Timothy J. Straub ◽  
Deepali Ravel ◽  
Lauriane Sollelis ◽  
...  

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.


2021 ◽  
Vol 8 (11) ◽  
pp. 166
Author(s):  
Dimitrios Kouroupis ◽  
Thomas M. Best ◽  
Lee D. Kaplan ◽  
Diego Correa ◽  
Anthony J. Griswold

The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.


2018 ◽  
Vol 138 (4) ◽  
pp. 811-825 ◽  
Author(s):  
Christina Philippeos ◽  
Stephanie B. Telerman ◽  
Bénédicte Oulès ◽  
Angela O. Pisco ◽  
Tanya J. Shaw ◽  
...  

Reproduction ◽  
2021 ◽  
Author(s):  
Shinnosuke Suzuki ◽  
John R. McCarrey ◽  
Brian P Hermann

Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII-VIII of the seminiferous epithelial cycle. Dogmatically, progenitor spermatogonia that express retinoic acid receptor gamma (RARG) at these stages will differentiate in response to RA, but this has yet to be tested functionally. Previous single-cell RNA-seq data identified phenotypically and functionally distinct subsets of spermatogonial stem cells (SSCs) and progenitor spermatogonia, where late progenitor spermatogonia were defined by expression of RARG and Dppa3. Here, we found late progenitor spermatogonia (RARGhigh KIT-) were further divisible into two subpopulations based on Dppa3 reporter expression (Dppa3-ECFP or Dppa3-EGFP) and were observed across all stages of the seminiferous epithelial cycle. However, nearly all Dppa3+ spermatogonia were differentiating (KIT+) late in the seminiferous epithelial cycle (stages X-XII), while Dppa3- late progenitors remained abundant, suggesting that Dppa3+ and Dppa3- late progenitors differentially responded to RA. Following acute RA treatment (2-4hr), significantly more Dppa3+ late progenitors induced KIT, including at the midpoint of the cycle (stages VI-IX), than Dppa3- late progenitors. Subsequently, single-cell analyses indicated a subset of Dppa3+ late progenitors expressed higher levels of Rxra, which we confirmed by RXRA whole-mount immunostaining. Together, these results indicate RARG alone is insufficient to initiate a spermatogonial response to RA in the adult mouse testis and suggest differential RXRA expression may discriminate responding cells.


Author(s):  
Michael Vanlandewijck ◽  
Michael Vanlandewijck ◽  
Johanna Andrae ◽  
Leonor Gouveia ◽  
Christer Betsholtz

2019 ◽  
Vol 14 (9) ◽  
pp. 805-810
Author(s):  
Oscar Echeagaray ◽  
Mark A Sussman

Transcriptional profiling continues to produce phenotypical data essential for understanding of basic cardiac biology and required to improve efficiency of cardiac regenerative and therapeutic approaches after injury. Accurate interpretation of cardiac transcriptional data comes with the unique challenges of heart biology including cardiomyocyte morphology, cryopreservation of limited samples and adequate selection of transcriptional platform at a single-cell resolution. Consequently, development and implementation of novel transcriptional platforms and creative bioinformatic analysis are essential to resolve standing questions in the field of cardiac regenerative medicine. Targeted bioinformatic approaches, advancing technological access, increase technical availability and fostering communication between interdisciplinary groups is critical to improve therapeutic approaches and to overcome challenges inherent to transcriptomic cardiac research.


Sign in / Sign up

Export Citation Format

Share Document