scholarly journals Transcribing the heart: faithfully interpreting cardiac transcriptional insights

2019 ◽  
Vol 14 (9) ◽  
pp. 805-810
Author(s):  
Oscar Echeagaray ◽  
Mark A Sussman

Transcriptional profiling continues to produce phenotypical data essential for understanding of basic cardiac biology and required to improve efficiency of cardiac regenerative and therapeutic approaches after injury. Accurate interpretation of cardiac transcriptional data comes with the unique challenges of heart biology including cardiomyocyte morphology, cryopreservation of limited samples and adequate selection of transcriptional platform at a single-cell resolution. Consequently, development and implementation of novel transcriptional platforms and creative bioinformatic analysis are essential to resolve standing questions in the field of cardiac regenerative medicine. Targeted bioinformatic approaches, advancing technological access, increase technical availability and fostering communication between interdisciplinary groups is critical to improve therapeutic approaches and to overcome challenges inherent to transcriptomic cardiac research.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 982-982
Author(s):  
Christopher J. Ng ◽  
Alice Liu ◽  
Katrina J. Ashworth ◽  
Kenneth L. Jones ◽  
Jorge Di Paola

Abstract Background The mechanisms that determine low VWF levels in patients with VWF levels between 30-50 IU/dL and no mutations in VWF are poorly understood. Hypothesis/Objective We hypothesize that the study of blood outgrowth endothelial cells (BOECs) from individuals with low VWF levels may reveal unique transcriptional profiles that contribute to the low VWF levels seen in these patients. Methods BOEC Derivation: Patients with low VWF levels and mucocutaneous bleeding (MCB) (30-50 IU/dL) were enrolled in an IRB-approved study. The mononuclear layer from whole blood was isolated and plated onto collagen coated plates. After extended incubation, BOECs were validated by visual inspection and flow cytometry. Endothelial Transcriptional Characterization: A total of 9 cells lines including those from individuals with low VWF and HUVEC and BOECs from individuals with normal VWF levels as control were assayed via single cell RNA sequencing. Bioinformatic analysis included generalized transcriptional expression, Ingenuity Pathway Analysis (IPA), and expression of VWF. RNA-sequencing expression data was filtered according to a standardized algorithm. Cells that were defined as monocytes (TYROBP expression > 2 copies) were excluded. Following monocyte exclusions, cells were determined to be of endothelial origin if they demonstrated the presence of transcripts of PECAM1, CDH5, ROBO4, ESAM, TIE1, or NOTCH4 as previously described by Butler et al. (Cell Reports 2016). Results BOEC Derivation: A total of eight BOEC lines were generated, 6 from individuals with MCB and VWF levels between 30-50 IU/dL (5:1 female: male ratio, age range 11-54 years) and 2 from healthy controls (2 female, age range 22-39 years) with normal VWF levels and no symptoms of MCB. Transcriptional Profiling of single endothelial cells from Low VWF Individuals: A 3D T-SNE plot that assesses unbiased differences in gene expression profiling was generated with each cell line represented by a different color (Figure 1A) demonstrating that individual cell lines have significant differences in their underlying transcriptional profiling. VWF Expression in Low VWF Samples: Overall expression of VWF was significantly decreased in low VWF BOEC samples (5.341 transcripts/cell) vs. control (9.076 transcripts/cell) ECs (figure 1B), P<0.0001. Further, histogram and mixed model (multiple gaussian) analysis of VWF expression revealed changes in generalized expression of VWF in Low VWF BOECs compatible with multiple populations of VWF-expressing BOECs, demonstrating cell mosaicism within each sample. IPA Analysis of Low VWF vs Control BOECs: IPA analysis demonstrated 64 pathways with a z-score difference >1 in Low VWF BOECs when compared to control BOECs (table 1), including multiple signaling pathways such as PI3kinase and AKT as well as several cytoskeleton pathways. Conclusions Single cell RNA sequencing of Low VWF BOECs reveal significant differences in transcriptional profiling when compared to control endothelial cell lines (control BOECs + HUVEC). BOECs from individuals with Low VWF levels demonstrate significantly lower VWF transcript expression than the control endothelial cells. Interestingly, BOECs from low VWF patients show significant differences in VWF transcript number within cells from the same individual demonstrating a degree of mosaicism previously described in murine endothelial cells. Finally, there are multiple cellular pathways that are differentially regulated in Low VWF BOECs as compared to control endothelial cells. Disclosures Ng: CSL Behring: Consultancy; Shire: Consultancy.


BIOspektrum ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 274-276
Author(s):  
Morgan S. Sobol ◽  
Anne-Kristin Kaster

AbstractSingle cell genomics (SCG) can provide reliable context for assembled genome fragments on the level of individual prokaryotic genomes and has rapidly emerged as an essential complement to cultivation-based and metagenomics research approaches. Targeted cell sorting approaches, which enable the selection of specific taxa by fluorescent labeling, compatible with subsequent single cell genomics offers an opportunity to access genetic information from rare biosphere members which would have otherwise stayed hidden as microbial dark matter.


2021 ◽  
Vol 2 (3) ◽  
pp. 100673
Author(s):  
Shichen Liu ◽  
Maximilian Nguyen ◽  
Sahand Hormoz

2010 ◽  
Vol 88 (8) ◽  
pp. 802-807 ◽  
Author(s):  
Erika I. Boesen ◽  
Jennifer S. Pollock ◽  
David M. Pollock

Endothelin (ET) receptor antagonists are antihypertensive and renoprotective in angiotensin II (AngII)-induced hypertension if administered when AngII infusion commences, but their effects on established hypertension are poorly understood. We therefore tested the effects of intervening with an ETA (ABT-627) or ETB (A-192621) receptor antagonist after establishing hypertension with AngII (65 ng/min s.c.) plus 8% NaCl diet (AngII–HS) in rats. Prior to administration of ABT-627, AngII–HS and AngII–HS plus ABT-627 groups displayed robust hypertension (mean arterial pressure (MAP), 170 ± 5 and 165 ± 5 mm Hg versus 110 ± 3 mm Hg in normal salt control rats at day 7, P < 0.05). Administering ABT-627 from day 8 of AngII–HS treatment prevented further rises in MAP (168 ± 5 and 191 ± 3 mm Hg at day 13 in AngII–HS plus ABT-627 and AngII–HS, P < 0.001), without blunting the significant increases in urinary protein (19-fold), albumin (25-fold), or MCP-1 excretion (6- to 8-fold) or the reduction in creatinine clearance. Administering A-192621 from day 8 mildly exacerbated AngII–HS induced hypertension (P < 0.05 for AngII–HS versus AngII–HS plus A-192621 on days 11 and 12 only) and reduced plasma nitrite/nitrate concentration (P < 0.05), without affecting proteinuria, albuminuria, or creatinine clearance. These results confirm the importance of ETA receptor signaling in maintaining AngII–HS hypertension and suggest that including ETB receptor blockade in therapeutic approaches to treating hypertension would be ineffective or even counterproductive.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yibo Gan ◽  
Jian He ◽  
Jun Zhu ◽  
Zhengyang Xu ◽  
Zhong Wang ◽  
...  

AbstractA comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.


2017 ◽  
Vol 89 (7) ◽  
pp. 4007-4012 ◽  
Author(s):  
Martin Dippong ◽  
Peter Carl ◽  
Christine Lenz ◽  
Jörg A. Schenk ◽  
Katrin Hoffmann ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 70 ◽  
Author(s):  
Nicolas M.B. Brancucci ◽  
Mariana De Niz ◽  
Timothy J. Straub ◽  
Deepali Ravel ◽  
Lauriane Sollelis ◽  
...  

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gilad D Evrony ◽  
Eunjung Lee ◽  
Peter J Park ◽  
Christopher A Walsh

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (<xref ref-type="bibr" rid="bib65">Upton et al., 2015</xref>) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.


Sign in / Sign up

Export Citation Format

Share Document