scholarly journals Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes

Author(s):  
Chen Ji ◽  
Xuelin Lou
2021 ◽  
Author(s):  
Yue Yuan ◽  
Caron Jacobs ◽  
Isabel Llorente Garcia ◽  
Pedro M. Pereira ◽  
Scott P. Lawrence ◽  
...  

The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For the first time, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Yue Yuan ◽  
Caron A. Jacobs ◽  
Isabel Llorente Garcia ◽  
Pedro M. Pereira ◽  
Scott P. Lawrence ◽  
...  

The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.


Nano Letters ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 1374-1381 ◽  
Author(s):  
Simon Hennig ◽  
Sebastian van de Linde ◽  
Martina Lummer ◽  
Matthias Simonis ◽  
Thomas Huser ◽  
...  

2011 ◽  
Vol 29 (10) ◽  
pp. 880-881 ◽  
Author(s):  
Joshua C Vaughan ◽  
Xiaowei Zhuang

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246138
Author(s):  
Hanieh Mazloom-Farsibaf ◽  
Farzin Farzam ◽  
Mohamadreza Fazel ◽  
Michael J. Wester ◽  
Marjolein B. M. Meddens ◽  
...  

Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide ‘lifeact’. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sang Hak Lee ◽  
Chaoyi Jin ◽  
En Cai ◽  
Pinghua Ge ◽  
Yuji Ishitsuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document