scholarly journals Generation of Orthotopic Pancreatic Tumors and Ex vivo Characterization of Tumor-Infiltrating T Cell Cytotoxicity

Author(s):  
Sarah Spear ◽  
Iain A McNeish ◽  
Melania Capasso
2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Knut Liseth ◽  
Elisabeth Ersvær ◽  
Tor Hervig ◽  
Øystein Bruserud

In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.


2003 ◽  
Vol 188 (6) ◽  
pp. 908-918 ◽  
Author(s):  
Maria C. Villacres ◽  
Simon F. Lacey ◽  
Catherine Auge ◽  
Jeff Longmate ◽  
John M. Leedom ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5442-5442
Author(s):  
Helga Schmetzer ◽  
Anja Liepert ◽  
Christine Grabrucker ◽  
Dorothea Fischbacher ◽  
Markus Freudenreich ◽  
...  

Abstract Presentation of leukemic antigens (LAA) can be improved by conversion of leukemic cells to leukemia derived DC (DCleu), thereby enabling the generation of leukemia specific CTL. DC/DCleu can be generated and quantified from every AML case with at least one of 3 different DC generating methods (Schmetzer 2007/2008). We want to enlight the role of the composition and quality of DC and (DC or blast trained) T cells to mediate leukemia cytotoxic reactions or to predict the clinical response to therapy. Autologous patients’, allogeneic donor T cells or T cells at relapse after SCT were trained with DC or blasts from 25 AML-cases in a ‘Mixed lymphocyte culture’ (MLC) and DC/T cell profiles and antileukemic Tcell cytotoxicity evaluated. We generated DC/mature DC/DCleu from every patient (Ø27/45/83%). DC training of T cells increased proliferating, CD4+ and memory T cells and decreased CD8+ T cells; blast training did not increase memory T cells. An antileukemic, very efficient T cell cytotoxicity was achieved in 47% of cases after DC/DCleu training but only in 24% after blast training of T cells. A comparison of cases with a gain of antileukemic T cell cytotoxicity to those without a lytic activity showed higher proportions of mature DC/DCleu and CD4/memory T cells and higher amounts of secreted IFNgamma and IL 6 in the lytically active, DC trained group. The differences were most distinct in the group with DC trained T cells prepared at relapse after SCT. Cases with a response to therapy showed higher proportions of DCleu, proliferating, memory or CD4+ T cells. We showed that >67% of all cases gained an antileukemic T cell cytotoxicity after DC training if >45% proliferating/>65% CD4+/>42% memory T cells or >40% mature DC/>65% DCleu were in the DC training setting. Moreover, 90% of DC trained T cells gained a lytic activity if >65% DCleu were in the MLC. AML patients presenting with a relapse after SCT showed better ex vivo convertibility of blasts to DCleu if they had responded to a GM CSF/DLI based therapy of their relapse after SCT compared to cases with no response (72 vs 36% blasts convertible to DCleu; 44 vs 29% generable DC). By spectratyping of the Vβ TCR region in an AML case we demonstrated a more extended clonal restriction of donor T cells after DC training of T cells compared to blast trained T cells. Moreover, the restricted pattern was also found in T cells from the patient after SCT. In summary, DC/DCleu can be generated in any given case independent from karyotype. A DC training of T cells improves the antileukaemic CTL, but can also mediate a T cell anergy. The composition of DC and T cells is predictive for the lytic efficiency of the trained T cells: A successful DC training of T cells is associated with high mature DC/DCleu counts and high rates of proliferating, CD4+ and memory T cells. Patients responding to a DLI/GM CSF based therapy are characterized by a better convertibility of blasts to DCleu and more mature DC. Identical clonal restrictions of T cells were found in blast trained and even more in DC trained T cells. Identical clonal patterns were found in ex vivo trained and in vivo selected T cells. We can contribute to understand biological mechanisms behind cytotoxic reactions and escape mechanisms and to develop adoptive immunotherapies with specific, antileukemia directed LAA specific T cells, e.g. selected by multimers from SCT donors or with specifically trained and selected T cells after DC training without side effects.


Blood ◽  
2021 ◽  
Author(s):  
Christian Augsberger ◽  
Gerulf Hänel ◽  
Wei Xu ◽  
Vesna Pulko ◽  
Lydia Jasmin Hanisch ◽  
...  

Antibody-based immunotherapy is a promising strategy for targeting chemo-resistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell-surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated using CrossMab and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) in the context of human leukocyte antigen (HLA) A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary AML cells was mediated in ex vivo long-term co-cultures utilizing allogenic (mean specific lysis: 67±6% after 13-14 days; ±SEM; n=18) or autologous, patient-derived T cells (mean specific lysis: 54±12% after 11-14 days; ±SEM; n=8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean specific lysis on day 3-4: 45.4±9.0% vs 70.8±8.3%; p=0.015; ±SEM; n=9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors showed a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase I trial in patients with r/r AML (NCT04580121).


Sign in / Sign up

Export Citation Format

Share Document