scholarly journals Combination of Optimal Conductor Selection and Capacitor Placement in Radial Distribution Systems Using PSO Method

2014 ◽  
Vol 10 (1) ◽  
pp. 33-41
Author(s):  
Mahdi Legha ◽  
Farzaneh Ostovar ◽  
Mohammad Legha

In This paper presents an approach for optimal placement and sizing of fixed capacitor banks and also optimal conductor selection in radial distribution networks for the purpose of economic minimization of loss and enhancement of voltage. The objective function includes the cost of power losses, voltage profile, fixed capacitor banks and also type of conductor selection. Constraints include voltage limit, maximum permissible carrying current of conductors, size of available capacitors and type of conductors. The optimization problem is solved by the Imperialism Competitive algorithm method and the size and site capacitor banks and type of conductors is determined. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman city, Iran and the simulation results are presented and discussed.

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Khalid Mohammed Saffer Alzaidi ◽  
Oguz Bayat ◽  
Osman N. Uçan

Distributed generators (DGs) are currently extensively used to reduce power losses and voltage deviations in distribution networks. The optimal location and size of DGs achieve the best results. This study presents a novel hybridization of new metaheuristic optimizations in the last two years, namely, salp swarm algorithm (SSA) and whale optimization algorithm (WOA), for optimal placement and size of multi-DG units in radial distribution systems to minimize total real power losses (kW) and solve voltage deviation. This hybrid algorithm is implemented on IEEE 13- and 123-node radial distribution test systems. The OpenDSS engine is used to solve the power flow to find the power system parameters, such power losses, and the voltage profile through the MATLAB coding interface. Results describe the effectiveness of the proposed hybrid WOA-SSA algorithm compared with those of the IEEE standard case (without DG), repeated load flow method, and WOA and SSA algorithms applied independently. The analysis results via the proposed algorithm are more effective for reducing total active power losses and enhancing the voltage profile for various distribution networks and multi-DG units.


Author(s):  
Ihsan Salman ◽  
Khalid Mohammed ◽  
Khalid Shaker ◽  
Hothefa Shaker

The environment friendly designing and running of electricity distribution structures are becoming vaster with the conjunction of renewable electricity options into power distribution systems. This study presents Moth Flame Optimization (MFO) approach to minimize total losses kW and energy cost and maximize net savings with solving the voltage deviation problem through optimal site and size of capacitor banks in electrical radial distribution networks. Two various load profiles are utilized to take a look at the modified algorithm on IEEE 123-, and 13-bus check networks. The OpenDSS software is utilized to resolve the power flowing via MATLAB programming interface. The results obtained are compared with IEEE normal state and other two heuristic approaches in same study, namely, imperialist competitive algorithm and particle swarm optimization. The proposed algorithm is more effective to minimise the total power losses and total cost and maximise net savings and to enhance the voltage profile for various distribution systems.


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 187-204
Author(s):  
Gian Giuseppe Soma

Nowadays, response to electricity consumption growth is mainly supported by efficiency; therefore, this is the new main goal in the development of electric distribution networks, which must fully comply with the system’s constraints. In recent decades, the issue of independent reactive power services, including the optimal placement of capacitors in the grid due to the restructuring of the electricity industry and the creation of a competitive electricity market, has received attention from related companies. In this context, a genetic algorithm is proposed for optimal planning of capacitor banks. A case study derived from a real network, considering the application of suitable daily profiles for loads and generators, to obtain a better representation of the electrical conditions, is discussed in the present paper. The results confirmed that some placement solutions can be obtained with a good compromise between costs and benefits; the adopted benefits are energy losses and power factor infringements, taking into account the network technical limits. The feasibility and effectiveness of the proposed algorithm for optimal placement and sizing of capacitor banks in distribution systems, with the definition of a suitable control pattern, have been proved.


2021 ◽  
Vol 11 (24) ◽  
pp. 11840
Author(s):  
Muhammad Bilal ◽  
Mohsin Shahzad ◽  
Muhammad Arif ◽  
Barkat Ullah ◽  
Suhaila Badarol Hisham ◽  
...  

Increasing power demand from passive distribution networks has led to deteriorated voltage profiles and increased line flows. This has increased the annual operations and installation costs due to unavoidable reinforcement equipment. This work proposes the reduction in annual costs by optimal placement of capacitors used to alleviate power loss in radial distribution networks (RDNs). The optimization objective function is formulated for the reduction in operation costs by (i) reducing the active and reactive power losses, and (ii) the cost and installation of capacitors, necessary to provide the reactive power support and maintain the voltage profile. Initially, the network buses are ranked according to two loss sensitivity indices (LSIs), i.e., active loss sensitivity with respect to node voltage (LSI1) and reactive power injection (LSI2). The sorted bus list is then fed to the particle swarm optimization (PSO) for solving the objective function. The efficacy of the proposed work is tested on different IEEE standard networks (34 and 85 nodes) for different use cases and load conditions. In use case 1, the values finalized by the algorithm are selected without considering their market availability, whereas in use case 2, market-available capacitor sizes close to the optimal solution are selected. Furthermore, the static and seasonal load profiles are considered. The results are compared with recent methods and have shown significant improvement in terms of annual cost, losses and line flows reduction, and voltage profile.


Author(s):  
M.A. Abdelkader ◽  
Mostafa A. Elshahed ◽  
Zeinab H. Osman

Due to the rapid increase in electricity consumption, there is a tendency to install distributed generations (DGs) at the level of distribution systems. Therefore, the distribution systems become active, and special load flow methods have to be developed and applied due to its radial structure and the relatively high ratio of resistance to reactance components. This paper presents a new forward algorithm for balanced three-phase load-flow analysis of radial distribution networks (RDNs). Kirchhoff’s Current Law and Kirchhoff’s Voltage Law are utilized. However, a new arrangement of these equations is presented based on formation of virtual slack buses and subsystems truncated from the original network during iteration. The proposed algorithm firstly applied on three IEEE benchmark RDNs with different cases such as different load models, various loading levels to illustrate the convergence even high loading, and inserted DGs,; then it is applied on a real system in Egypt. Its high convergence rate is tested for the DG optimization problem. Further, the virtual subsystems can be utilized to recognize quickly the effect of load changes on the bus voltage profile. The results show that the proposed algorithm is more accurate, not sensitive to initial value, simple equations are used, and robust with high convergence rate because of employing the updated bus voltages immediately after determining their value.


2021 ◽  
Vol 13 (18) ◽  
pp. 10224
Author(s):  
Sasan Azad ◽  
Mohammad Mehdi Amiri ◽  
Morteza Nazari Heris ◽  
Ali Mosallanejad ◽  
Mohammad Taghi Ameli

Considering the strong influence of distributed generation (DG) in electric distribution systems and its impact on network voltage losses and stability, a new challenge has appeared for such systems. In this study, a novel analytical algorithm is proposed to distinguish the optimal location and size of DGs in radial distribution networks based on a new combined index (CI) to reduce active power losses and improve system voltage profiles. To obtain the CI, active power losses and voltage stability indexes were used in the proposed approach. The CI index with sensitivity analysis was effective in decreasing power losses and improving voltage stability. Optimal DG size was determined based on a search algorithm to reduce active power losses. The considered scheme was examined through IEEE 12-bus and 33-bus radial distribution test systems (RDTS), and the obtained results were compared and validated in comparison with other available methods. The results and analysis verified the effectiveness of the proposed algorithm in reducing power losses and improving the distribution system voltage profiles by determining the appropriate location and optimal DG size. In IEEE 12 and 33 bus networks, the minimum voltage increased from 0.9434 p.u and 0.9039 p.u to 0.9907 p.u and 0.9402 p.u, respectively. Additionally, the annual cost of energy losses decreased by 78.23% and 64.37%, respectively.


2016 ◽  
Vol 17 (3) ◽  
pp. 351-361 ◽  
Author(s):  
Surender Reddy Salkuti ◽  
Young Hwan Lho

Abstract In this paper, a new heuristic algorithm is proposed for the optimum voltage control, which is applicable for the large Radial Distribution Systems (RDSs). In the RDSs, voltage levels at different buses can be maintained within the specified limits using the conductor grading or placing the Voltage Regulators (VRs) and capacitors at suitable locations. The proposed Back Tracking Algorithm (BTA) proposes the optimal location, number and tap positions of VRs to maintain the voltage profile within the desired limits and decreases losses in the system, which in turn maximizes the net savings in the operation of distribution system. In addition to BTA, an approach using the fuzzy logic called Fuzzy Expert System (FES) is also proposed, and the results of FES are compared with the results of BTA. This heuristic algorithm proposes the optimal location and tap setting of VRs, which contributes a smooth voltage profile along the network. It also used to access the minimum number of initially considered VRs, by moving them in such way as to control the network voltage at minimum possible cost. It is concluded that the FES also gives the optimal placement and the number along with the tap settings of VRs. The proposed FES contributes good voltage regulation, and decreases the power loss which in turn increases the net savings when compared to the BTA. The effectiveness of the proposed heuristic approaches are examined on practical 47 bus and 69 bus Radial Distribution Systems (RDSs).


Author(s):  
Hazim Sadeq Mohsin Al-Wazni ◽  
Shatha Suhbat Abdulla Al-Kubragyi

This paper presents a hybrid algorithm by applying a hybrid firefly and particle swarm optimization algorithm (HFPSO) to determine the optimal sizing of distributed generation (DG) and distribution static compensator (D-STATCOM) device. A multi-objective function is employed to enhance the voltage stability, voltage profile, and minimize the total power loss of the radial distribution system (RDS). Firstly, the voltage stability index (VSI) is applied to locate the optimal location of DG and D-STATCOM respectively. Secondly, to overcome the sup-optimal operation of existing algorithms, the HFPSO algorithm is utilized to determine the optimal size of both DG and D-STATCOM. Verification of the proposed algorithm has achieved on the standard IEEE 33-bus and Iraqi 65-bus radial distribution systems through simulation using MATLAB. Comprehensive simulation results of four different cases show that the proposed HFPSO demonstrates significant improvements over other existing algorithms in supporting voltage stability and loss reduction in distribution networks. Furthermore, comparisons have achieved to demonstrate the superiority of HFPSO algorithms over other techniques due to its ability to determine the global optimum solution by easy way and speed converge feature.


Sign in / Sign up

Export Citation Format

Share Document