scholarly journals Energy-Efficiency of Dual-Switched Branch Diversity Receiver in Wireless Sensor Networks

2011 ◽  
Vol 7 (2) ◽  
pp. 130-137
Author(s):  
Ghaida AL-Suhail

In this paper, we develop an analytical energy efficiency model using dual switched branch diversity receiver in wireless sensor networks in fading environments. To adapt energy efficiency of sensor node to channel variations, the optimal packet length at the data link layer is considered. Within this model, the energy efficiency can be effectively improved for switch-and-stay combiner (SSC) receiver with optimal switching threshold. Moreover, to improve energy efficiency, we use error control of Bose-Chaudhuri-Hochquengh (BCH) coding for SSC-BPSK receiver node compared to one of non-diversity NCFSK receiver of sensor node. The results show that the BCH code for channel coding can improve the energy efficiency significantly for long link distance and various values of high energy consumptions over Rayleigh fading channel.

2021 ◽  
pp. 163-174
Author(s):  
Levente Klein ◽  
Sergio Bermudez ◽  
Fernando Marianno ◽  
Hendrik Hamann

2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


Author(s):  
Mohammed Ahmed Magzoub ◽  
Azlan Abd Aziz ◽  
Mohammed Ahmed Salem ◽  
Hadhrami Ab Ghani ◽  
Azlina Abdul Aziz ◽  
...  

Despite the rapid growth in the market demanding for wireless sensor networks (WSNs), they are far from being secured or efficient. WSNs are vulnerable to malicious attacks and utilize too much power. At the same time, there is a significant increment of the security threats due to the growth of the several applications that employ wireless sensor networks. Therefore, introducing physical layer security is considered to be a promising solution to mitigate the threats. This paper evaluates popular coding techniques like Reed solomon (RS) techniques and scrambled error correcting codes specifically in terms of security gap. The difference between the signal to nose ratio (SNR) of the eavesdropper and the legitimate receiver nodes is defined as the security gap. We investigate the security gap, energy efficiency, and bit error rate between RS and scrambled t-error correcting codes for wireless sensor networks. Lastly, energy efficiency in RS and Bose-Chaudhuri-Hocquenghem (BCH) is also studied. The results of the simulation emphasize that RS technique achieves similar security gap as scrambled error correcting codes. However, the analysis concludes that the computational complexities of the RS is less compared to the scrambled error correcting codes. We also found that BCH code is more energy-efficient than RS.


2020 ◽  
Vol 16 (1) ◽  
pp. 66-74
Author(s):  
René Bergelt ◽  
Wolfram Hardt

Wireless sensor networks (WSN) are deployed in a multitude of applications both in industrial and academic fields. In recent years, due to the emerge of Internet of Things (IoT) technologies and Vehicle2X communication scenarios, novel challenges for wireless sensor network platforms - regarding hardware and software - arose. Thus, challenges known from big data processing have reached the WSN scope and consequently approaches and methods have been devised to handle these. One such approach is queriable wireless sensor networks which enable their users the specification of sensing tasks in a declarative way without the need to re-program nodes in case the application requirements change. As many current WSN applications feature active parts with which nodes can directly influence their environment, the term wireless sensor actuator networks (WSAN) has been coined, setting such networks apart from solely passively measuring networks.In this article, we will present a short introduction to big data processing in wireless sensor networks which motivates the usage of queriable networks. We will show that in order to enable a WSAN to carry out actions energy-efficiently and in a timely manner, an event-based action model is favorable. Additionally, we will demonstrate how such an event system can be used to improve sub query performance in WSNs. We conclude with an evaluation regarding the benefit of combining this approach with wake-up receiver technologies based on a qualitative energy efficiency definition for WSN.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ru Huang ◽  
Xiaoli Chu ◽  
Jie Zhang ◽  
Yu Hen Hu

Software defined wireless networks (SDWNs) present an innovative framework for virtualized network control and flexible architecture design of wireless sensor networks (WSNs). However, the decoupled control and data planes and the logically centralized control in SDWNs may cause high energy consumption and resource waste during system operation, hindering their application in WSNs. In this paper, we propose a software defined WSN (SDWSN) prototype to improve the energy efficiency and adaptability of WSNs for environmental monitoring applications, taking into account the constraints of WSNs in terms of energy, radio resources, and computational capabilities, and the value redundancy and distributed nature of data flows in periodic transmissions for monitoring applications. Particularly, we design a reinforcement learning based mechanism to perform value-redundancy filtering and load-balancing routing according to the values and distribution of data flows, respectively, in order to improve the energy efficiency and self-adaptability to environmental changes for WSNs. The optimal matching rules in flow table are designed to curb the control signaling overhead and balance the distribution of data flows for achieving in-network fusion in data plane with guaranteed quality of service (QoS). Experiment results show that the proposed SDWSN prototype can effectively improve the energy efficiency and self-adaptability of environmental monitoring WSNs with QoS.


Author(s):  
Sangsoon Lim

<span>In battery-based wireless sensor networks, energy-efficient operation is one of the most important factors. Especially, in order to improve energy efficiency in wireless sensor networks, various studies on low power operation have been actively conducted in the MAC layer. In recent years, mutual interference among various radio technologies using the same radio frequency band has become a serious problem. Wi-Fi, ZigBee, and Bluetooth use the same frequency band of 2.4GHz at the same time, which causes various signal interference problems. In this paper, we propose a novel channel reservation scheme, called IACR, to improve the energy efficiency of wireless sensor networks in an environment where interference occurs between various wireless technologies. The proposed scheme inserts a PN code into a long preamble for exchanging transmission status information between a transmitting node and a receiving node, thereby improving the transmission success probability while receiving less influence on transmission of other radio technologies. We performed an event-driven simulation and an experiment to measure the signal detection rate. As a result, it can be seen that the proposed technique reduces the packet drop rate by 15% and increases the discoverable distance of the control packet for channel reservation.</span>


Author(s):  
Sunita Upta ◽  
Sakar Gupta ◽  
Dinesh Goyal

: A serious problem in Wireless Sensor Networks (WSNs) is to attain high-energy efficiency as battery powers a node, which has limited stored energy. They can’t be suitably replaced or recharged. Appearance of renewable energy harvesting techniques and their combination with sensors gives Energy Harvesting Wireless Sensor Networks (EH-WSNs). Therefore, the area shifts from energy preservation to reliability of the network. For reliability, Coverage and Connectivity are important Quality of Service (QoS) parameters. Many sensor node scheduling heuristics have been developed in past. Some of them focus on more than single order of Coverage and Connectivity. If reliability is main concern for a WSN, then definitely there is a need to incorporate Q-Coverage and P-Connectivity in WSN. Lifetime of a WSN decreases while considering Q-Coverage and P-Connectivity. After some time network dies and it is of no use. Therefore, there is a trade-off between reliability and lifetime of a WSN. If EH-WSN is used, then lifetime of a WSN increases as well as Q-Coverage and P-Connectivity QoS parameters can used for achieving reliability. This paper proposes a sensor node scheduling heuristic for EH-WSN considering Q-Coverage and P-Connectivity. A comparison of a Q-Coverage and P-Connectivity sensor node scheduling heuristic when used between battery powered WSN & EH-WSN is done. Comparison shows that lifetime using EH-WSN is much greater as compared to battery powered WSN. This research is beneficial for real time WSN applications where EH-WSN provides power regularly without any intervention.


Sign in / Sign up

Export Citation Format

Share Document