scholarly journals Photocatalytic Degradation with Green Synthesized Metal Oxide Nanoparticles – A Mini Review

2021 ◽  
Vol 2 (1) ◽  
pp. 70-81
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Kamyar Shameli ◽  
Nurfatehah Wahyuny Che Jusoh ◽  
Siti Nur Amalina Mohamad Sukri ◽  
Nur’Afini Ismail

Water pollution is one of the major problems faced by mankind worldwide. With the increase of populations and urbanization, the natural water resources are under great threat due to the release of untreated effluent. An alternative treatment method, photocatalysis, emerged as a promising solution. Photocatalysis process utilizes photosensitive catalyst to degrade the pollutant and one of the most common catalyst being used is metal oxide. To increase the photocatalytic activity, nanosized metal oxide being used instead of its bulk form. In these recent years, metal oxide nanoparticles production has been shifted towards a more environmentally friendly process which is also commonly known as green synthesis. In this review, we discussed on the photocatalytic process and production via green synthesis of common metal oxide nanoparticles being used as photocatalyst.

Author(s):  
Sagadevan Suresh ◽  
Selvaraj Vennila ◽  
J. Anita Lett ◽  
Is Fatimah ◽  
Faruq Mohammad ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1545 ◽  
Author(s):  
Liubov Shkodenko ◽  
Ilia Kassirov ◽  
Elena Koshel

At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 766 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Kamil Kuča ◽  
Anu Kalia ◽  
Eugenie Nepovimova ◽  
...  

Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by ‘Pushpa Ayurveda’ or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Nhung H. A. Nguyen ◽  
Vinod Vellora Thekkae Padil ◽  
Vera I. Slaveykova ◽  
Miroslav Černík ◽  
Alena Ševců

2021 ◽  
Vol 3 (1) ◽  
pp. 1-25
Author(s):  
Hemra Hamrayev ◽  
Kamyar Shameli ◽  
Mostafa Yusefi ◽  
Serdar Korpayev

Zinc oxide is of significant importance for many industries due to its versatile properties, which have been enhanced with the production of this material in the nanoscale. Recent interest in the preparation of metal oxide nanoparticles using biological approaches has been reported in the literature. This technique known as “green synthesis” is an environmentally benign process than conventional methods like physical and chemical synthesis methods. Zinc oxide nanoparticles (ZnO-NPs) have been successfully obtained by green synthesis using different biological substrates like chitosan. Chitosan is biocompatible, biodegradable polymer having exclusive physical and chemical properties. Chitosan/metal oxide nanocomposite is a promising nanomaterial with enhanced properties for multiple functionalities. Therefore, this review discusses favorable approach in the formation of cross-linked Chitosan/ZnO nanocomposites attracting significant attention in various fields such biomedical due to their unique biodegradable, biocompatible, non-toxic nature. The use of biological sources, fabrication of green synthesized ZnO nanoparticles and its applications is briefly discussed. Overall, this review is a comprehensive study for the synthesis of ZnO-NPs using biological sources counting on their features and applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (43) ◽  
pp. 25158-25169 ◽  
Author(s):  
Mavinakere Ramesh Abhilash ◽  
Akshatha Gangadhar ◽  
Jagadish Krishnegowda ◽  
Mahendra Chikkamadaiah ◽  
Shivanna Srikantaswamy

The present investigation focuses on the synthesis of metal oxide nanoparticles (MONPs) via a facile hydrothermal route.


Sign in / Sign up

Export Citation Format

Share Document