scholarly journals Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations

2020 ◽  
Vol 8 (10) ◽  
pp. 1545 ◽  
Author(s):  
Liubov Shkodenko ◽  
Ilia Kassirov ◽  
Elena Koshel

At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.

2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3339 ◽  
Author(s):  
Saee Gharpure ◽  
Aman Akash ◽  
Balaprasad Ankamwar

The field of nanotechnology elaborates the synthesis, characterization as well as application of nanomaterials. Applications of nanoparticles in various fields have interested scientists since decades due to its unique properties. Combination of pharmacology with nanotechnology has helped in development of newer antimicrobial agents in order to control the ever increasing multidrug resistant micro-organisms. Properties of metal and metal oxide nanoparticles like silver, gold, titanium dioxide as well as magnesium oxide as antimicrobial agents are very well known. This review elaborates synthesis methods and antimicrobial mechanisms of various metal as well as metal oxide nanoparticles for better understanding in order to utilize their potentials in various biomedical applications.


2019 ◽  
Vol 6 (5) ◽  
pp. 1310-1322 ◽  
Author(s):  
Xiaojie Hu ◽  
Bing Yang ◽  
Wei Zhang ◽  
Chao Qin ◽  
Xue Sheng ◽  
...  

Aggregates or adducts of MONPs and plasmids are blocked out by cells, resulting in the inhibition of lateral plasmid-mediated ARG transfer.


2021 ◽  
Vol 22 (1) ◽  
pp. 5-15
Author(s):  
Aswini Rangayasami ◽  
Karthik Kannan ◽  
Murugesan Subban ◽  
Devi Radhika

Photocatalytic degradation is an effective method to alleviate environmental pollution which is caused by organic pollutants. The expanding natural contamination has attracted the overall scientists to deal with the advancement of photocatalyst effectively depends on semiconductor for the treatment of defiled water assets by different natural poisons that are delivered from numerous industries. In this work, the research progress of properties and applications of photocatalytic and antimicrobial activities and understanding of the toxicity mechanisms of different metal oxide nanoparticles are reviewed. The metal oxide nanoparticles are a wide band hole semiconductor that can be eager to create electron opening sets when transmitted with light. Photographs are an actuated electron opening that instigates power hydrogen, oxygen, and debases inorganic/natural/organic mixes to make power. This review aims to examine the wide biological and mechanisms of photocatalytic degradation and antimicrobial applications.


2020 ◽  
Vol 01 ◽  
Author(s):  
Muna A. Ali ◽  
Kareem A. Mosa

Background:: The concept of nutraceuticals has gained increased interest recently as it is based on using natural substances for therapeutic applications. However, limitations such as low bioavailability have restricted the use of these substances thus far. Nanoencapsulation of nutraceuticals has been proposed as a promising solution to circumvent such issues by increasing their bioavailability and targeting their release. Metal and metal oxide nanoparticles are amongst the inorganic nanocarriers that have been studied for their ability to encapsulate nutraceuticals. Objectives:: The aim of this article is to provide an overview of metal and metal oxide nanoparticles and their synthesis and applications. Furthermore, the conjugation of these nanoparticles with nutraceuticals will be discussed along with their potential applications. Conclusion:: It has been observed that the conjugation of nutraceuticals with metal nanoparticles resulted in the cumulative properties of both these factors with increased effectiveness. Such advancements are crucial for nutraceutical use in important theranostic applications that combine diagnosis and therapy.


2018 ◽  
Vol 12 (5) ◽  
pp. 705-714
Author(s):  
Jyoti Tejpal ◽  
Richard Cross ◽  
Lucy Owen ◽  
Shashi Paul ◽  
Richard Jenkins ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 742
Author(s):  
Georgy D. Otinov ◽  
Alina V. Lokteva ◽  
Anastasia D. Petrova ◽  
Irina V. Zinchenko ◽  
Maria V. Isaeva ◽  
...  

Rapid development of antibiotic resistance in bacteria is a critical public health problem in the world. One of the main routes of resistance development is the transfer of genes containing antibiotic resistance cassettes. Gene transfer can be done through horizontal transfer of genes: transduction, conjugation, and transformation. Many factors in the environment influence these processes, and one of them is the action of metal oxide nanoparticles (MONPs), which can appear in the milieu through both biological synthesis and the release of engineered nanomaterial. In this study, the effect of AlOOH, CuO, Fe3O4, TiO2, and ZnO MONPs on the transformation (heat shock transformation) of bacteria Escherichia coli K12, and the conjugation between E. coli cc118 and E. coli Nova Blue were studied. The MONPs were synthesized by one method and fully characterized. ZnO nanoparticles (NPs) have significantly increased the efficiency of transformation (more than 9-fold), while the other NPs have reduced it to 31 times (TiO2 NPs). AlOOH NPs increased the number of transconjugants more than 1.5-fold, while CuO and Fe3O4 NPs did not have a significant effect on transformation and conjugation. Thus, the data shows that different types of MONPs can enhance or inhibit different gene transfer mechanisms, affecting the spread of antibiotic resistance genes.


Change in lifestyle of humans in this present generation with huge dependence on packaging materials has encouraged several studies on development of new variety of packaging materials. Emphasis on replacement of existing non-biodegradable packaging materials with biodegradable materials paved the way for the use of biopolymers. Lack of properties, such as thermal stability and mechanical strength in biopolymers led to the development of biopolymer nanocomposites by adding metal/metal oxide nanoparticles as fillers into the biopolymers. Metal/metal oxide nanoparticles improve mechanical/tensile strength, thermal stability as well as antimicrobial properties of the binding and receiving polymer matrix. Bio-mediated synthesis of metal/metal oxide nanoparticles result in the development of novel packaging materials at a low cost and without releasing hazardous wastes into the environments. Novel packaging materials with metal/metal oxide nanoparticles as additives are capable of increasing the shelf life of food, in certain cases they act as indicators of quality food inside the package. Summarily, this present chapter focuses on bio-mediated synthesis of various metal/metal oxide nanoparticles and their applications in food packaging.


2021 ◽  
Vol 2 (1) ◽  
pp. 70-81
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Kamyar Shameli ◽  
Nurfatehah Wahyuny Che Jusoh ◽  
Siti Nur Amalina Mohamad Sukri ◽  
Nur’Afini Ismail

Water pollution is one of the major problems faced by mankind worldwide. With the increase of populations and urbanization, the natural water resources are under great threat due to the release of untreated effluent. An alternative treatment method, photocatalysis, emerged as a promising solution. Photocatalysis process utilizes photosensitive catalyst to degrade the pollutant and one of the most common catalyst being used is metal oxide. To increase the photocatalytic activity, nanosized metal oxide being used instead of its bulk form. In these recent years, metal oxide nanoparticles production has been shifted towards a more environmentally friendly process which is also commonly known as green synthesis. In this review, we discussed on the photocatalytic process and production via green synthesis of common metal oxide nanoparticles being used as photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document